SIX-DIMENSIONAL ADAPTIVE SIMULATION OF THE VLASOV
EQUATIONS USING A HIERARCHICAL BASIS
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Abstract. We present an original adaptive scheme using a dynamically refined grid for the
simulation of the six-dimensional Vlasov-Poisson equations. The distribution function is represented
in a hierarchical basis retaining only the most significant coefficients. This allows considerable savings
in terms of computational time and memory usage. The proposed scheme massively relies on the
computational Adaptive Mesh Refinement framework. For the moment we embed it into a simple
finite difference method. Numerical experiments are presented for the d-dimensional Vlasov-Poisson
equations in the full 2d-dimensional phase space for d = 1,2 and 3. The six-dimensional case is
compared to a GADGET N-body simulation.
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1. Introduction. The essential idea of Adaptivity in Numerical Analysis lies
in the representation of a complex system with a reduced number of elements. It
aims at decreasing the memory resources and the computational time necessary to
simulate this system. Often it boils down to trading off numerical volume (computer
memory, number of elementary operations) against an increase in the implementation
complexity (data structures, algorithms).

The most common adaptive technique used in Mechanics [18, 33, 38, 44, 45],
Physics [5, 35] and Astrophysics [1, 419, 50] is called the Adaptive Mesh Refinement
where a Cartesian grid refines locally into finer Cartesian grids. It is often associated
with finite volume methods [33, 44, 50]. Among AMR methods we can distinguish two
different approaches: the patch-based AMR where the data structure is a collection

of grids of varying sizes and accuracies embedded the ones in the others [35, 47] and
the fully-threaded tree AMR where the points or cells (or groups of points or cells)
are stored in the nodes or in the leaves of a large tree structure [9, 29, 44, 15, 50]. We

use this latter method.

We are interested in the adaptive methods tackling the simulation of large sys-
tems. Most of them rely on the discretisation of the solution in a reduced functional
basis: the finite elements where the underlying mesh does not have to be a Cartesian
one [34, 16], the wavelets which are associated to a vast non-linear approximation the-
ory [13], the spectral methods which show a good numerical accuracy [24, 43]. The hi-
erarchical bases [] are special kinds of wavelet bases where the primal scaling function
and the primal wavelet are identical —thought the duals being still different. Sparse
grids method itself [5, 42] is a sub-class of hierarchical bases. It is similar to the hy-
perbolic —anisotropic— hierarchical bases. Dealing with high dimensional problems it
allows one to approximate multi-dimensional functions which have no medium or high
frequency oscillations [8, 30]. The tensorisation technique which consists in expressing
a multi-dimensional function as the product of matrices of one-dimensional functions
—one matrix per dimension— also allows to simulate high dimensional problems such
as the three-dimensional Vlasov-Poisson equations when the effective dimensionality
of the problem is low [39, 41].

Passing from the classical two and three dimensional AMR to a six-dimensional
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one forces us to adopt an efficient implementation and to apply simplified numerical
methods. Hence we propose a rather simple method: the interpolatory hierarchical
basis is associated with an Eulerian discretisation on which we apply finite difference
schemes. We avoid dissipation by using a third-order scheme for the convection.

The presented method —which largely relies on classical AMR technics [33, 50,

, 38,52, 5,47, 9, 11]- is not intended to compete with present and efficient Vlasov
solvers using Eulerian [3, 25, 26, 27, 51], semi-Lagrangian [48] or Lagrangian [7, 15,

, 49] schemes, for the lower two and four dimensional phase space simulations
where AMR technics have already been widely tested [5, 35, 47, 52]. But it compares
advantageously with the existing six-dimensional Eulerian Vlasov-Poisson simulations
[10, 51] and stands the comparison with N-body simulations [19] which are widely used
for such kinds of simulations.

The reader interested in comparing the merits of the various Vlasov solvers can
refer to [10] for a short and well-argued discussion on this topic. The AMR adaptivity
demonstrates valuable assets when the solution develops well-localized singularities
50, 35].

In the first part Sec. 2 we describe the interpolet expansion and the AMR fi-
nite differences discretisation. In the second part Sec. 3 we introduce and detail the
adaptive process. Finally, in the numerical experiments Sec. 4, we apply this hier-
archical basis adaptive scheme to Vlasov-Poisson equations simulations in the full
two-dimensional, four-dimensional and six-dimensional phase space. These equations
modelise collisionless plasmas as well as gravitational systems.

2. The hierarchical basis adaptive scheme.

2.1. Interpolet expansion. We consider a function f: Q +— R, x — f(x) with
Q = [0, 1] and periodic boundary conditions. We assume we know f at points(xy)xea
located at dyadic positions indexed by A = (j,k1,...,kq), j > 0and 0 < k; < 27
Vi € [1,d], and defined by:

X\ = (2ijk1, .. .,27jk‘d).

The set A recollecting the indices of the retained points (x))rea is constructed ac-
cording to the local behavior of f through a wavelet thresholding and respecting
a gradation condition (see Sec. 3.3). We set Qy = {x),A € A}. We notice that
X(jk1,ooika) = X(j+1,2k1,...,2kq)> SO the set A may contain different indices correspond-
ing to a unique point.

We part the set A into sets A; containing the indices of the level j i.e. such that
AeAN; = XN=(j,ki,...,kq). Weset Q; = {xx,\ € Aj;}. Hence

o=

720

The set Q4 is constructed depending on the set of points Q; C §; where we want
to refine the approximation of the function f. Hence Q; =Q;NQj41. Then if a point
of the level j + 1 can be interpolated from Q; —with a given interpolation process—, it
is activated and remains to €2;41.

As a result, in particular, for most of the interpolation processes, a point has all
its ancestors present in the coarser levels. That is if A = (j, k1,...,kq) belongs to
Aj, then (5 —1,k1/2,...,kq/2) —where k/2 denotes the integer division of k by two—
belongs to A;_;. This corresponds to having a fully-threaded tree.



SIX-DIMENSIONAL ADAPTIVE HIERARCHICAL BASIS FOR VLASOV EQUATIONS 3

REMARK 2.1. For sake of simplicity of the algorithms, we menage to make all
the sets € self-sufficient regarding the basic computations: the interpolation and the
differentiation at points in §; call point values from Q; exclusively. Hence the transfer
of information between the levels j — 1 and j is carried out only through common
elements of the set Q;_; = Q;_1 N Q.

The function f whose point values are known at (x))aeca is uniquely decomposed
into the interpolet hierarchical basis (®x),.z where the set A is such that Q3 = Qp
and for all X = (j, k1, ...,kq) € A at least one k; is odd. Doing so we exclude the case
when one point belongs to two different levels: X(jx, .. ky) = X(j+1,2k1,....2k4)- Lhis
induces a bijection between the sets A and Q4. Hence the decomposition:

(1)
(f(%)xeqy — f= Z dr®y.

AeA

The multi-dimensional interpolet ®, is defined as the tensorial product of one the
dimensional interpolets ¢; g, (x;). For A = (4,k1,..., k),

PA(X) = @)k, (T1) X - X ik, (Ta),

where we use the familiar wavelet notation ¢;(z) = p(2/z — k). The interpolets
(pj k) are interpolant scaling functions: ¢(0) =1 and ¢(k) = 0 Vk # 0 (see [21] and
the Appendix A for more details). The algorithm transforming (f(xy))x into (dx)x
as well as its inverse have a linear complexity. This transform simply boils down to
computing the residue of the interpolation of level j by level j — 1 for all levels j > 1.
The expansion (1) allows a straight-forward projection along any directions. For
instance, let us assume we want to integrate the two-dimensional function f:

Jmax

291
F@nw) =Y Y djkka ik (@1)0; ks (22)

=0 k1,ka=0

along x1. As [ ¢jp(x)de = 277 [ p(x)dr = 277, we have the exact integration
formula

Jmax 29—1 (271

F(302)=/ flavoo)dey =Y > | Y djklkz/ @ik (1) d1 | )y (72)

7=0 ko=0 \ k1=0 z
Jmax 27 —1 279 -1
_ —J . .
=y > 2 > djkiky | @jna(w2).
=0 ko=0 k1=0

This is particularly useful when solving the Vlasov-Poisson equations for computing
the density, see Eqs.(12) and (18) in the numerical experiments Sec. 4.

2.2. Multi-dimensional interpolation. The sets (£2;) are dependent the ones
on the others and respect an interpolation relation: all the points of ©; can be inter-
polated from the points €2;_; N §2;. This relationship shapes the set (£;) as one can
see in Fig. 1.

The algorithm allocates a set of possible points: a node (j,k) at level j with
k = (ki,...,kq) €[0,2771 —1]¢ may contain the 2¢ points {277 (2k +¢),¢ € {0,1}%}.
From this set, we determine which points are activated and which are not under the
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F1G. 1. Refinement of a two dimensional grid: the interpolation process from the set €1;_1 in
black to the set Q; in green. The blue crosses represent all the possible points which are not activated
because they cannot be interpolated from €2;_1 N €Y.

condition: a point is activated if and only if it has a place in a node and it can be
interpolated from the other active points with the interpolation algorithm. Then we
carry on the computation only on the active points.
Using the fourth order interpolet hierarchical basis presented in Appendix A is
equivalent to applying the fourth order interpolation:
(2)
—fle—=3h)+9f(x—h)+9f(x+h)— f(xr+3h)

Iy f(z) = 16 .

In multi-dimensional simulations, the interpolation operates in a tensorial way.
Hence, each point of the set ©; \ ©,_; calls one interpolation involving four points.
As a result the complexity of the interpolation algorithm remains linear with respect
to the number of points independently of the dimensionality.

2.3. Finite differences on the adaptive grid. We opted for finite differences
because they are easy to implement. This choice also allows the scheme to reach the
third order of accuracy in any dimension for sufficiently smooth solution at a linear
price whatever the number of dimensions. Meanwhile its accuracy and its stability
are comparable to classical two- and three-dimensional AMR finite-volume methods
[44, 38].

Nevertheless it is not optimal for simulating Vlasov-Poisson problem where semi-
Lagrangian methods perform much better [27]. In particular it suffers several draw-
backs. First the time step has to satisfy a CFL condition Eq. (5). Second one may
observe the appearance of spurious oscillations and non-positive values of the distri-
bution function in the case of non-smooth solutions. These issues can be addressed
thanks to WENO schemes and positivity-preserving methods [12]. Third contrarily
to finite-volume methods, this method does not conserve the mass on non-uniform
meshes.

To apply the finite difference scheme in the multi-level adaptive grid Fig. (1), we
navigate through the sets Q; for j going from 1 to jmax. The set € is a uniform grid
with 2¢ points and a step equal to 1/2. We apply the fifth order differentiation with
periodic boundary conditions. Then we apply recursively the following operations for
7 from 2 t0 jmax:

e we transfer the differentiation values obtained at the points belonging to the
intersection £2;_; N €Q; from ;_; to £,

e we interpolate them on all the points of €2,

e we compute the differentiation using a high-order scheme and replace the
interpolated values by these more local ones when they exist.
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For the numerical experiments, we apply the differentiations formula of Appendix
B. Choosing the fifth-order scheme when possible comes with little cost (an increase
of less than 20%) and improves the accuracy and the conservations. The numerical
errors resulting from the differentiation scheme Appendix B are at least of third-order
as shown in the numerical experiments Sec. 4.1.

2.4. CFL stability condition on the adaptive grid. Let us consider the
following equation for the convection of a distribution function f by a velocity function
v:T9— R
(3)

O f(t,x)+v(x) - Vf(t,x)=0

where Vf = (01f,02f,...,0af) and v-Vf = > v;0;f. In order to deal with any
convection equation of the form Eq. (3) using the hierarchical basis adaptive scheme
from Part 2.1, we apply the third-order upwind finite difference scheme described in
Appendix B. A particular care was given to the CFL condition which provides an
upper limit to the time step.

We optimize the CFL condition in order to benefit from the adaptivity of the
grid. In time coordinate we apply a fourth-order Runge-Kutta scheme [31] to the
equation (3). Given the fact that this adaptive scheme does not conserve the mass
yet, we overlook the symplectic nature of the Vlasov equations. For finite difference
schemes, on a uniform grid with space step h, the CFL condition on the time step §t
is given by:

(4)

h
i<C
maxxeq || V(X)||a
with the constant C' approximately equal to 1.73 in our case (from [19] and experi-
ments by the author) and ||[v(x)||s = Zle |v;|. As already noticed by [35], in the

case of an adaptive grid, the space step h of the grid depends on the position x in the
computational domain 2. Then this allows to mitigate the CFL condition. Hence the
CFL condition becomes:

()

ot <C minﬂ,
x€Q [[v(x)][ 2

In phase-space coordinates, this condition on the time stepping is particularly advan-
tageous since the high velocity parts of the grid generally present a low refinement:
usually h(x) > h(0) for x such that ||v(x)|| > ||v(0)]|, so the time step J¢ remains
large independently of maxxegq ||V(x)]e1-

3. Adaptivity.

3.1. Brief error analysis. Numerical errors appear in three circumstances:
when a new point is interpolated, when the differentiation scheme is applied and
when the solution is updated with the time scheme.

We assume that the solution is C*°, which is true for Vlasov-Poisson equations
starting from a C initial condition. Then with the fourth order hierarchical basis
we use in the numerical experiments, the interpolation error is of order O(h%), the
finite differences Sec. 2.3 provide a differentiation of order O(h?), and the fourth-order
Runge-Kutta scheme is of order O(6t*) which means O(h*) under the CFL condition.
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As a result the dominating error theoretically comes from the third-order ap-
proximation of the derivative of the distribution function f. This error is detailed in
Appendix B. For the various third-order finite differences, it is of the type : C' h3f(4).

3.2. Minimization of the nonlinear approximation error. It is known from
the nonlinear approximation theory [13] that for ® € B;(L?) the hierarchical basis
expansion Eq. (1) allows to compute the superior bound:

(6)
P dd
1550y = O (I (29275 II(dA)Aerpr)jzo ||éq)

Minimizing the LP-norm of the error on the s-th derivative of the distribution function
f is equivalent to minimizing the B;(Lp )-norm of the residue. For a given € > 0 this

corresponds to discarding the coefficients d such that 2(s=5)i |dx| < e. This provides
the criterion to save the most significant coefficients dy:
(7)

|dy| > 20755,

The exponent a = —s + % advocates a flatter refinement in higher number of dimen-
sions. In our case, we aim at minimizing the LP-norm of the error on the gradient of
the distribution function (s = 1) in order to minimize the LP-norm of the error on the
distribution function in future times. But because of the intrication of the levels €2;
the ones in the other through the interpolation scheme, and because of the scarcity of
points in six dimensions, the theoretical exponent v = —1 to minimize the L°°-norm
of the error is not optimal as seen in the numerical experiments. There is a kind of
shift to a larger optimal «.

In a similar fashion, the AMR users apply criteria on derivatives of lower orders
such as: the absolute value of the function, e.g. in [50] the AMR maps a mass
repartition function and each cell contains the same amount of mass, the gradient
in Harten’s Discrete Framework [33, 415] or, more recently, the second derivatives in
[52]). Such criteria allow one to automatically and efficiently refine or de-refine the
computational grid according to the local regularity of the function without too many
theoretical considerations about the nonlinear approximation.

3.3. Refining and coarsening in practice. Assume we have defined an o € R
relevant for the numerical experiment and an € > 0 adapted to the available computer
memory.

First, in a bottom-up algorithm —for j going from j,a.x to 2— we compute the
residue of the fourth-order interpolation of the level €1; by the level £;_;. It is
equivalent to a transform in the isotropic fourth-order hierarchical basis Eq. (1).

© o o o o o o
0 o e 0
B e
0 o ° O
© o o o o o o

Fic. 2. Elementary cube for the refinement.
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Then we gather the residues d; from Eq. (1) of the points 277k’ inside cubes
centered on points of the type 277(2¢; + 1,...,204 + 1) as indicated in Fig. 2. For
k=(20,+1,...,2¢; 4+ 1), this yields a refinement weight associated to this cube:

2 2
wie= Y, e
ec{—1,0,+1}4

Then we apply the following refinement instructions in this order:

e if wjy > 2%¢, the 3¢ points inside the area are refined creating 3¢ nodes at
level j + 1 (if it is not the case already);

o if w; > 299~1¢ then the nodes inside the area are preserved; we also acti-
vate (create or preserve) the neighboring nodes within two ranks or one rank
depending if it is respectively located under the wind or not;

e we simulate an interpolation in order to see which points inside the nodes are
reachable by the interpolation algorithm (see Sec. 2.2); these are activated;

e if a point 277k is not active then it is removed from the memory, and if a
node contains no active point, it is also removed (see Appendix C for the
relation between a node and the points it contains).

Sometimes we also fix a maximum level of refinement jy.x and we impose: j < jyax-
The larger «, the closer the grid will be to a uniform grid. Varying € allows an increase
or a decrease in the number of grid points in order to cope with the memory storage
limit of the computer (see the numerical experiments in Sec. 4).

4. Numerical experiments. In this Section we test the adaptive numerical
scheme developed in this paper in various situations. First, as this method specifically
targets six-dimensional simulations, we test the transport of a Gaussian in a six-
dimensional box. Then we check its properties on classical two-dimensional plasma
test cases: the Landau Damping and the Bump-on-Tail instability. The simulation of
the two stream instability in 2D (four-dimensional phase space) from [25] shows the
limits of this method with finite differences when applied to the electric case. Finally,
we present an academic six-dimensional astrophysics simulation: the merging of two
halos in the full six-dimensional phase space.

4.1. Convection and stretching of a Gaussian in six dimensions. The
numerical experiment consists in convecting a Gaussian function

fo(x) = exp ( JIx — xol? >

202

with xo = (3,..., 1) in the six dimensional box T® = [0, 1]% with periodic boundary

conditions, for the velocity field:
(8)
1
cos(2mxy + 1)

v(21, T2, ..., T6) = cos(2mzy + 2)

cos(2mxy + 5)

For any particle at position X (t) = (X;(t))1<i<e at time ¢ = 0, the constant velocity
v; =1 gives X1(t) = X1(0) + ¢ and, for 2 < i <6,

1 1
/ v (X (t))dt = / cos(2nt + 27 X1(0) +4i—1)dt = 0.
t=0 t=0
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Hence the Gaussian comes back with its initial shape to its initial position at integer
t. The exact solution is given by:

ft,x) = folxy —t, 20 — % (sin(2rzy + 1) —sin(2w(zy — ) + 1)), ...

(9) .
L T6 o (sin(27rx1 + 5) — sin(2w(x1 — t) + 5)))

so we can compute the error exactly.

The code is written in C and parallelized with Open-MP. This experiment requires
approximately 2e+48 points over 400 time steps. It takes 33 hours on the 40 threads
of a 2.50 GHz Intel Xeon E5-2670 processor with 32 Go RAM memory.

min 0 max

F1G. 3. Projective view in the (x1,x2) plan of the siz-dimensional convected Gaussian at times
t=0,t=0.2,t=0.7 and t = 1. First row: the distribution function. Second row: the adaptive
grid.

In Fig. 3, we represent a two-dimensional projection onto (x1,x2) of the distri-
bution function and of the adaptive grid. The maximum refinement level (in dark
green) corresponds to a 128° uniform grid equivalent accuracy. The time step is
taken constant equal to

close to the CFL maximum C f L

"~ 400 (][ ~ 344

with C = 1.73, h =277 and ||v|n = 4.642.
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Since we want to minimize the L* error, we take the thresholding parameter «
equal to 0 (see Sec. 3.2). The initial value of € is equal to 3e—4 and the standard
deviation of the Gaussian o = 0.1.

In Fig. 3, we observe that the refinement of the grid follows the stretched Gaussian.
The L°° error primarily appears at the boundaries between the different levels of
refinement ahead of the Gaussian.

Regarding the color scale of Fig. 3, the dark blue color stands for zero and the
dark red for the maximum value. This color scale is used in all the other figures
representing a distribution function.

0.16
014 number of points normL2(error) .
] 12.0e+08
0.12 7 _
0.10 7] 1.6e+08
. 0.08 threshold B
i< i i Z
= =
5 g
o 0.06 N 3
2 . 4
= S
"5 0.047 /\/ﬁ\ B E
7 normLinf(error) ] g
0.02 »\/Jﬁ/ 4 3
| ] =l
0.00 | . |
i min(f) i
-0.02 _
-0.04 T T T T T T T T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0
time

Fic. 4. Error analysis, the curve for the threshold € was rescaled to fit the scale of the other
curves. Relative errors (|| foum — fexact ||/|| fexact||) on the distribution function in L? and L™ norms.

The L®-norm of the error remains inferior to 8% as shown in Fig. 4. Relative
error means the ratio between the norm of the error and the norm of the Gaussian.
In this figure, we also represent the L?-norm of the error, the minimum value of the
solution (which shows that the scheme does not conserve the positivity), the threshold
€ used to form the adaptive grid, the number of points contained in the grid.

The memory use coincides with the number of allocated points (see Appendix C).
In order not to exceed the memory limit and optimize the memory use, we bound
the number of points with a maximum and a minimum. In the present test case the
maximum of points is taken equal to 2e+8 and the minimum represents 80% of the
maximum. Each time the number of points exceeds the maximum we have fixed, the
threshold ¢ is increased by 10%, leading to a drop in the number of allocated points
and memory needs. This explains the saw-teeth aspect of the curve plotting the
number of points, for ¢ € [0,0.5]. On the contrary when the memory need decreases,
we take advantage of this to increase the accuracy and we decrease the threshold by
10%. This is what happens in the second part of the graph, for ¢ € [0.5,1].

The error increases dramatically when the threshold e is maximum when a major
stretching of the distribution function occurs, around ¢t = 0.5.
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1.01
L2norm(f)

] e

mass

relative values

T max(f)

0.94 I I I T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

time

Fic. 5. Conservation analysis.

In Fig. 5, we plot the mass, the L?-norm and the maximum of the distribution
function during time. They indicate a precision of a few percents. The curves repre-
sent relative values compared to the initial one, so they equal 1 at time ¢t = 0.

The fast oscillations of the maximum correspond to the shifting of the actual
maximum of the solution from a point of the mesh to an other one.

We apply the same experiment to assess the convergence of the hierarchical basis
adaptive scheme and estimate an optimal choice for the value of the parameter o
involved in the refinement process Sec. 3.2 and Sec. 3.3. We run the experiment until
t = 0.1 and compare the numerical result with the exact solution. We plot the error
in L®-norm and L?-norm for numbers of points varying approximatively from 2e+46
to 4e+8 in Fig. 6.

We would expect a third-order convergence and as the number of points is linked

to an average h: N = 0(576), for a p-th-order method, we would have

=0 (i") =0 (")) =0 (b,

leading to a convergence in O (N *0'5). Nevertheless, experimentally on Fig. 6 we
rather observe an order 0.8-0.9 convergence in L> and L? norms. This probably
means that the fifth-order finite difference scheme used in the interior of the refinement
levels dominates the convergence rate. It corresponds to p = 5 and a convergence rate
e=0 (N70.83).

Although we would expect & = —1 to be optimal in L>° approximation, it rather
looks like that o = 2 provides the best results. In the L? norm, the experimental
results are in better agreement with the theory since o = 3 seems to be optimal, close
to the theoretically optimal o = 2 .

Since the error concentrates at the boundary of the refinement levels, the activa-
tion of a new level triggers an increase of the L° error. This explains the jumps in
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FIG. 6. Error plots in L™= (left) and L? (right) norms. Both x and y azes have a Logq scale.

the L* norm of the error in the convergence plot Fig. 6.

4.2. Application to plasma physics. In Plasma physics and astrophysics,
most of the Vlasov-Poisson simulations rely on Particle-In-Cell methods [15, 17] as
they allow 6-dimensional phase-space simulations at a reasonable computational cost.
In these methods, the distribution function is coarsely discretized with Dirac functions
(particles) whose positions evolve through Lagrangian schemes. Recently, grid-based
Eulerian schemes have been developed [27] but they rarely pass the curse of dimen-
sionality [42] and most of the time do not exceed four dimensions for the phase-space
[32].

Landau damping. We consider a distribution function f : R?? — Ry, (x,v)
f(x,v) subject to the Vlasov-Poisson equation:

(10)
hf+v -Vif+E({t,x)-Vyf=0

with the electric force

(i)
E(t7 X) = vx(b(tv X)a

(12)
Axd(t,x) = /

veRd

fi,x,v)dv — / ft,x,v)dvdx.

x,veRd

To make the following simulation in dimension d = 1, f is taken periodic in the z
variable. The initial condition is given by: for (z,v) € [-2m, 27| X [—6, 6],

fol,w) = 1= O'Oj‘;:(o'“’ exp(~0?/2),

and we apply the hierarchical basis adaptive scheme for ¢ € [0,100]. The refinement
parameter « is taken equal to 1.7, the grid (Fig. 7) starts with 3,332 points and
reaches a maximum of 45,522 at t = 57.08. The electric field (Fig. 8) reproduces its
classical curve in the Landau damping with the correct damping rate.
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F1G. 7. The distribution function and the adaptive grid at t = 22 during the Landau damping
experiment.

L2 norm of the Electric field

0 10 20 30 40 50 60 70

Time

Fic. 8. Landau damping of the electric field.

Bump-on-Tail instability. In this paragraph we simulate the Bump-on-Tail in-
stability with the hierarchical basis adaptive scheme. In [35], the authors tested a
block-structured AMR using a high-order finite-volume scheme on this case. We ob-
tain similar results.

The simulation box is (z,v) € [—3lm, L7] x [-10,10]. The initial condition is
given by:

.2
fo(z,v) = (ﬁ%eé + \(}%64(”4'5)2> (1+0.04 cos(0.3x)).
We integrate f in Eq. (12) thanks to its hierarchical basis expansion Eq. (1) and
summing the coefficients in the velocity direction as indicated in Sec. 2.1. Then Eq.
(12) and (11) are solved thanks to one-dimensional Fourier transforms.

The simulation is plotted in Fig. 9 which shows a very good agreement with the
results presented in [35]. We observe that the fine mesh, in purple, equivalent to a
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t=0 t=22 t =50 t =100

F1G. 9. Bump-on-Tuail instability (1D). First row: the distribution function. Second row: the
adaptive grid .

10242 uniform mesh, follows the filaments accurately. If one is interested in following
precisely the behavior and the shape of the filaments, the adaptive mesh refinement
method may compete with uniform grid methods even in one dimension.

In Fig. 10 we observe that the number of points varies from 17,000 at the begin-
ning to 150,000 at the maximum complexity. The refinement parameters were fixed
toa=1.7 and € = 7.18e-9.

160000

140000

120000

100000

800007

number of points

600007

400007

200007

0 T T T T T T T T T T
0 10 20 30 40 50 60 70 80 LY 100
time

F1c. 10. Evolution of the number of grid points in the AMR.
Fig. 11 illustrates important defects of the proposed AMR method for solving the

Vlasov-Poisson equations: it does not conserve the mass and it makes negative values
appear.
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FiG. 11. Plots of some theoretically conserved quantities. Left: minimum and mazimum values
of the distribution function. Right: mass and total energy. Representation in relative variation

(Af/f) except for the min (min(f)/ max(fo)).

b Total Energy

_ Ec
Ep

0.6 7

0.4

0.2

0.0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

time

Fic. 12. Variation of the kinetic (Ec) and potential (Ep) energies. The kinetic energy and the
total energy were vertically shifted by —23.

In Fig. 12 we can see that although the kinetic energy and the potential energy
tend to compensate each other, the total energy drifts away from its initial value.

Four-dimensional phase space case: the two beams instability. We apply the hi-
erarchical basis adaptive scheme to a two-dimensional Vlasov Poisson test case: the
Fijalkow Two Beams instability first presented in [25]. This is a rather new result
regarding AMR simulation of Vlasov Poisson equations since except in computer sci-
ence [36], authors of AMR Vlasov Poisson solvers usually restrict to one-dimensional
cases [35, 47].

In the simulation box (z,y, u,v) € [ 197, 19712 [—3 7, 37]? with periodic bound-
ary conditions, we consider the initial distribution function:

(13)

7 24402
folz,y,u,v) = 1o o <_u—|—8v> sin? (g) (14 0.05 cos(0.3x))

100
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Fic. 13. Phase space view of the initial condition Eq. (13). Cuts of the distribution function
and of the adaptive grid along (z,u) at y =v = 0.

This initial distribution, represented in Fig. 13, was chosen in order to maximize
the two stream instability [25]. Initially, it is discretized with 4.7e+6 points and
has a maximum level of refinement equivalent to a 64* uniform grid. The threshold-
ing parameters are taken as follows: a = 1.5 and ¢ = 1.59¢—6 initially, but ¢ varies
thereafter.

)

Fi1G. 14. Cut along (z,u) of the distribution function at y = v = 0 in the phase space at time
t=12.

in Fig. 14 we represent the numerical solution at ¢ = 12 when the instability begins
to develop. The maximum refinement goes up to 256* (the red points in Fig. 14 right).
The number of active points increases to 53e+6 but the threshold e stays at 1.59e—6
(see Fig. 15).

We limitate the number of points to a maximum of 60e+6.

When the non-linear regime develops after t = 12, steep fronts appear all over
the domain in the (z,y) direction. This results in a large increase of the number of
points, and then of the threshold ¢ (Fig. 15). When the threshold becomes to large,
the conserved quantities begin to vary by few percents (Fig. 16) and the energy drops
(Fig. 17).

Here we measure the inability of the present finite difference AMR scheme to
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Fi1G. 15. Number of points and threshold along time. The threshold curve is linearly scaled in
order to fit the window.
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FIG. 16. Plot of theoretically conserved quantities: the mass, the L?>-norm, the entropy and the
total energy. Relative values with respect to the initial quantities.

capture steep filamentations distributed homogeneously in the spatial domain (z,y).
It would probably work better if we refine only in the velocity (u,v) direction.

4.3. Six-dimensional astrophysics case: the merging of two halos of
dark matter. In order to apply the hierarchical basis adaptive scheme to a six-
dimensional phase space problem, we switch from plasma physics to astrophysics. In
plasma physics the distribution function tends to occupy the whole three-dimensional
physical space while in the gravitational case it collapses, allowing the adaptive scheme
to refine both in velocity variables and in space variables (see Fig. 18 and 21). As a re-
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Fic. 17. Plot of the energies. The potential energy is shifted by +4150.

sult we are able to simulate the gravitational Vlasov-Poisson equations at a reasonable
cost.
For a collisionless self-gravitating system such as a galaxy or a dark matter halo,
the distribution function evolves in the phase space (x,v) € RS, with x = (2, 2)
and v = (u, v, w)
(14)
CRxR*xR® — R

f t,x,v —  f(t,x,Vv)
and its motion is modelised by the gravitational Vlasov-Poisson equations:
(15)

Ohf+v -Vif+E(t,x) - Vyf=0

(16)
E(t7 X) = _vxd)(ta X)

(17)
Axp(t,x) = 4w Gp(t, x)

where the density function p is given by:
(18)
pltx) = | fltx.v)dv.
R3

W »

Comparing with plasma equations (11) and (12), note, in particular, the sign in
the force Eq. (16) switching from repulsive to attractive, and the factor “47” (not
gone when the equations are non-dimensionalised in astrophysics) in Eq. (17).
These equations admit stationary solutions [2, 6]. One of them, the Plummer
model, was successfully tested by Takao Fujiwara in [28] using the symmetries of
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the problem in a two-dimensional plus one invariant simulation. It is given by the
following distribution function:

o\ 172 7/2
(19) £ i) = (2 (+(0)) - ||v||2>

o2\ ~1/2
if 2<1+() > vz =0
a
and f(r,||v||) = 0 otherwise.

We note 72 = 22 + y? + 22 and ||v]|? = u? + v? + w?.
Then the potential function is given by:

(20) »
o ==L (14 (5))

and the density function by:

(21) »
r\2\
f’(’"):iﬂfs<”(a)) :

In these formulas, G denotes the constant of gravity, M the total mass and a a length
parameter. In the following simulations, these constants are taken equal to 1.

This distribution function Eq. (19) is compactly supported in velocity but not in
space.

In Fig. 18, we represent this stationary solution in an adaptive grid with a criterion
based on a second-order hierarchical basis decomposition. The maximum level of
refinement corresponds to a 256% uniform grid (in red).

Fi1G. 18. The Plummer Model. Left: two-dimensional cut at zero (0,0,0,0,0,0) in (z,u)-view
of the Plummer Model. Center: cut of the corresponding adaptive grid. Right: zoom at the center.

We apply the hierarchical basis adaptive scheme to the six-dimensional merging
of two spherical Plummer models. Hence we simulate the ‘collision’ of two halos
which, when separated, form stable systems. We compare the results to the ones
obtained with GADGET, a N-body code extensively used in the literature [19]. Only
the treecode part of this “treePM” algorithm is employed and 50 millions particles
have been used to describe the merger process. We have also considered a softening
length of 6.84e—4. For other specific parameters (time step, accuracy of the relative
cell-opening criterion, etc. .. ), we have used the same values as those in [14]. Running
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this GADGET simulation takes around 87 hours on a 64 threads node of the Horizon
cluster at Institut d’Astrophysique de Paris.

The convection is solved using the scheme described in Sec. 2.4 with the interpo-
latory hierarchical basis of fourth-order in the expansion Eq. (1). The gravitational
forces are computed in the three-dimensional Fourier space on a uniform grid of the
smallest scale (i.e. with a FFT in a 2563 grid). The time step 6t is computed at the
beginning of each Runge-Kutta cycle by the CFL formula Eq. (5) with C' = 1. This
value is below the CFL constant for uniform domains C' = 1.73. At the end of each
Runge-Kutta cycle, we let the mesh evolve as described in Sec. 3.3 with @ = 1.5 and
€ = 7.819e—7 at t = 0 and we prescribe the maximum number of points to be 4e+8.
In order to exploit memory optimally, we fix the minimum number of nodes at 80%
of this maximum. The value = 1.5 corresponds to the theoretical minimization
of the approximation error of f in L*norm and of Vf in L'?/5-norm. It is fixed
arbitrary. The choice of € = 7.819¢—7 implies the activation of 151,416,766 points at
t = 0. This is a compromise between the speed of the computations and the accuracy
at the beginning of the simulation.

v=(0.3,0,0)

x=(~6,0,-2)
Cb// 7=(0,0.3,0)

x=(0,-6,2)

F1c. 19. Initial conditions for the interaction of two Plummer models.

The initial condition is sketched in Fig. 19. Each sphere represents a stationary
solution Eq. (19). The size of the box is [—12,12]3 x [-8,8]3. We apply periodic
boundary conditions. In order to visualize the evolution of the six-dimensional nu-
merical solution in the phase space, we make two-dimensional cuts at zero, and both
two-dimensional and three-dimensional projections.

The color scale is the same as in Fig. 3.

In Fig. 20, we see the collision and merging of the two spheres in a three-
dimensional (z,y, z) projection.

Fig. 21 represents cuts along the (z,w) plan of the six-dimensional phase space
at © =y = u = v = 0. It only gives an insight of the complexity of the six-
dimensional solution. Fig. 21 last row represents a cut of thickness one fiftieth of
the domain length (i.e. 04 Ryax/50 in the space directions and 0 + Vi /50 for the
velocity directions). The GADGET N-body simulation provides noisy images due to
the Poissonian nature of the particles distribution inside the pixels [49]. Comparing
with the GADGET simulation validates the results obtained with the hierarchical basis
adaptive scheme simulation.

In Fig. 22, we plot:

e the mass M(t) = [, f(x,v,t)dxdv

(NI

e the L2-norm || f||2(t) = (fx,v f(x,v,t)?dx dv)
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Fic. 20. Three-dimensional view in the physical space (z,y, z) of the collision of two Plummer
spheres at times t = 0.6,12.6,15.6,19.8,25.8,49.2. This visualization was obtained for t € [0,60]
with the hierarchical basis adaptive scheme of second order.

e the entropy S(t) = [ —f(x,v,t)In(f(x,v,1)) dxdv
which are conserved quantities for the Vlasov-Poisson equations.
In Fig. 24 we also plot

e the kinetic energy
(22)

Ec(t):/ @f(x,v,t)dxdv

)

The mass is not conserved and undergoes variations in +3% range. The entropy

increases reasonably (+4%) and this increase can be explained by the usual numerical
averaging of the filamentation [19].

We define the complexity of the solution at a given time ¢ as the number of points
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t=15.2 t=21.6 t=33.6
min 0 max
Fic. 21. Cut in the (z,w)-direction of the siz-dimensional phase space at times t = 15.2,

t =21.6 and t = 33.6. First row: cut of the adaptive grid. Second row: cut of the density function
obtained with the hierarchical basis adaptive scheme. Third row: cut of a GADGET simulation.

necessary to represent it in the hierarchical basis with a given accuracy (fixed by
the value of the threshold €). Similarly it is defined as the inverse of the accuracy
(threshold €) for a given number of points. Watching at the threshold evolution
Fig. 24, we can distinguish five phases:
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F1G. 22. Conservation analysis: plots of the mass, entropy and L?-norm.
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F1G. 23. Plots of the threshold € (normalized scale) and of the number of points.

1. for t € [0, 13], the two spheres get close, the complexity stays steady,
2. for t € [13,16], first collision, the complexity surges and the kinetic energy

makes a jump,

3. for t € [16, 18], the spheres recede one from the other, the complexity stays

steady,

4. for t € [18,25], the spheres interact anew, creating a complex situation,
5. for t € [25,40], damping, the solution simplifies itself, the threshold decreases
to retain more and more small scales while these are dissipated by the nu-

30

35

40

merical scheme at scales close to the local resolution of the grid.

The number of points peaks at a maximum of 400, 000, 000 triggering an increase
of the threshold ¢ due to available memory. Then, for ¢ greater than 30, it decreases
to a minimum of 320, 000, 000 which makes the threshold € decrease. Running this ex-
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F1G. 24. Plot of the kinetic energy Ec.

periment took 1, 390 time steps, and 249 wallclock hours of computation on a 2.66GHz
Intel Xeon X5650 (12 threads and 48 Go RAM memory).

This experiment can be compared to the one presented in [51] where one can
barely see what is going on given the coarseness of the grid and the diffusivity of
the scheme. In this paper [71], two King spheres interact in a 64% uniform mesh
(~ 6.87¢e+10 points, i.e. 150 times what we are using) applying a Positive Flux
Conservation (PFC) scheme [26] which is a kind of finite volume method, associated
to a massive MPI/OpenMP hybrid parallelization on 1024 CPU cores on 64 nodes
(i.e. 85 times the resources we are consuming).

5. Conclusion. This work shows the possibilities offered by the hierarchical
basis adaptive scheme to solve the Vlasov equations. The HBA scheme provides a good
accuracy that is out of reach of the traditional Eulerian schemes in six dimensions. Its
basic simplicity —finite differences and polynomial interpolation— caused some defects
that must be corrected: the mass and the energy are not conserved and under-resolved
shock-like structures may deteriorate the solution.

This opens the way to further developments: to cope with the conservation trouble
we can switch to Finite Volume schemes adapting the existing literature e.g. [17] to
the six-dimensional constraint, or we will continue with Interpolet/Finite Differences
enforcing the mass conservation by correcting the finite difference scheme. The shock
and negative value problems may be resolved using limiters and weighted essentially
non-oscillatory (WENO) schemes.

Other perspectives are to apply a semi-Lagrangian scheme [4] instead of the finite
differences and to further reduce the number of degrees of freedom by using six-

dimensional Hyperbolic Wavelets [22] whose use for dimensional reduction has been
put into practice in the Sparse Grids [8]. It could be adapted to turbulent systems
using the wavelets described in [20] that are intermediate between multiresolution

analysis isotropic wavelets and hyperbolic anisotropic wavelets. It may be the best
way to make the six-dimensional Vlasov solver a routine numerical tool.

Appendix A. Interpolets.
The first interpolet is 2 (z) = max(1 — |z|,0) which corresponds to the second-
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order interpolation f (%) = w
relation:

(23)

. This function satisfies the dyadic self-similarity

T

22 (3) = 502+ 1)+ 02(a) + 3a(e = 1),

The fourth-order interpolation

(24)
f (1) —f(=D+9f0)+9f(1) - f(2)

2) "~ 16 ’
provides a scaling function whose self-similarity relation is written:
(25)

T 1 9 9 1
21 (3) = —geeale+3) + Tpeale+1) +eu(@) + peal —1) — Tpa(e - 3).

It is represented in Fig. 25. This function is also called the Deslauriers-Dubuc function

[21].

-3 -2 -1 0 1 2 3

Fic. 25. The Deslauriers-Dubuc function and its self-similarity relation.

More generally the interpolet of order 2n is given by the self-similarity relation:
(26)
x
Pon <§) = ;Cg(pgn(l' - l>7

with the symmetry c_, = ¢y V¢, the conditions ¢y = 1, coy = 0 for £ > 0. The sequence
(c20+1)0<e<n—1 verifies a Vandermonde system of equations

(27)
11 o1 a1 i
1 32 oo (2n—1)2 cs 0
1 32 . (2n—1)*"2 Con—1 0
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whose solution is given by:

(28)
1 (25 +1)2 n (—1)*
_ = — Cn—l Cn-‘r@ .
C20+1 2 j:OI jl#e (2] + 1)2 — (2£ + 1)2 24n73 2n—1 2% +1 2n—1

Appendix B. Finite differences and interpolation. The fourth-order
interpolet refines with the classical fourth-order interpolation scheme:
(29)
—flx—=3h)+9f(x—h)+9f(z+h)— f(x+ h)
16

= f(z)+ gh‘*f(‘*)(x) + O(h®).

The choice of the finite difference schemes is more delicate since various instabilities
may appear. The downwind instability manifests itself by the local appearance of
bumps or gaps in the numerical solution. Here are the finite differences used in the
scheme. Although probably far from optimal, their combination with the fourth order
interpolation proved rather stable. To compute a differentiation, for a right to left
wind, we apply the following finite differences:

- the fifth-order upwind finite difference:
Df(x) =
(30)

2f(x+3h)—15f(x+2h)+60 f(x+h)—20 f(x) —30 f(x —h)+3 f(x—2h)
60 R

I f(x) =

h5
= f'(2) + 55 £ @) + O(r%),
- the third-order upwind finite difference:

(31)
_ ) _ _9 _
Df(x) = fx+2h)+6f(x+h)—3f(x) flx—h)
6h
h3
= f'(2) = 5 [P @) + 0",
- a third-order finite difference at the rear of the level (with respect to the wind)
(32)
—3f(x+2h)+16 f(x +h) — 12 f(x) — f(x — 2h
Df(x) = f( ) f( ) flx) = f( )
12h
h3
= f'(2) = L [P (@) + O(h?),
- a third-order finite difference at the head of the refinement level
(33)

—f(x+3h)+ 18 f(x+h)—8f(z) =9 f(z—h)
24 h

Df(z) =

hS
= f'(z) = 5 F V(@) + O,

- a third-order finite difference at the head of the refinement level, using the
differentiation computed at the coarser level:
(34)

:5f(m—|—2h)—4f(x)—f(m—2h) 1

Df(z) T = 5Dan f@+2h)
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h3
= ['(2) = S f D (@) + O,

This error estimate stands when the differentiation Doy, f(z + 2 h) is computed with
a fifth-order finite difference.

If one of these schemes is not available because the point is near the boundary
of the refinement level, we apply the next one. If none is available, we keep the
fourth-order interpolation of the differentiation computed at the coarser level. This
interpolate is computed by default at every point.

These error estimates stand for sufficiently smooth functions.

Appendix C. Data structure and C encoding. The encoding of tree
structures usually relies either on hash-tables of keys referring directly to the positions
of the nodes [9] either on real tree structures built with pointers. In Fortran, these
pointers can be emulated thanks to tables of indices [50].

Using C programming, we chose to implement the whole fully-threaded tree struc-
ture. The basic element allocated in memory is the node. In dimension d, its building
block is given by:

struct Node {

double *tab; /* table of maximally 2% points */
struct Node *prt; /* pointer to the parent node x/
struct Node **chd; /* pointers to the children */
struct noeud *vsn[2d]; /* 2d pointers to the neighbors x/
signed char frk; /* filiation rank *x/
unsigned long long flg; /* flag of point current activation */
unsigned long long nwf; /* flag of point next activation */
unsigned long long 1df; /* flag of point previous activation x/
unsigned long long chf; /* flag for the children presence x/
int ell; /* parameter with different uses */
short int dir; /* direction of the wind */
signed char num[2%]; /* renumbering of the points x/
signed char szp; /* number of active points in the node */

I¥

An unsigned long long contains 64 bits, each bit corresponds to one of the 26
six-dimensional cube points. Thanks to this, it is possible to mark the point activation
inside a node with a single unsigned long long variable.

The multiple nodes of a tree can be accessed through the parent—children con-
nection (see Fig. 26 left). Then a table ordered level by level (Fig. 26 right) allows to
make an Open-MP parallelization.
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FiG. 26. Accessing the nodes in the tree structure. Left: graph transversal. Right: table of node

addresses ordered level by level.
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