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Abstract

This article presents a dynamically adaptive grid numerical scheme
for the six-dimensional Vlasov-Poisson equations [29, 37]. The distri-
bution function is represented in a non-uniform dyadic Cartesian grid
which allows considerable savings in terms of computational time and
memory storage. The proposed scheme combines the Adaptive Mesh
Refinement framework [28, 4, 33] and a very high (higher than second)
order accuracy of the finite difference method, in six dimensions.

keywords: adaptive mesh refinement, dyadic refinement, hierarchical
basis, multiresolution, finite difference method, phase-space simulations,
Vlasov-Poisson equations

1 Introduction

The essential idea of Adaptivity in Numerical Analysis lies in the represen-
tation of a complex system with a reduced number of elements. It aims at
decreasing the memory resources and the computational time necessary to
simulate this system. Often it boils down to trading off numerical volume
(computer memory, number of elementary operations) against an increase
in implementation complexity (data structures, algorithms).

The most common adaptive technic used in Mechanics [13, 24, 28, 31, 32],
Physics [7, 19] and Astrophysics [1, 35, 36] is called the Adaptive Mesh Re-
finement where a Cartesian grid refines locally into finer Cartesian grids. It
is often associated with finite volume methods [24, 31, 36]. Among AMR
methods we can distinguish between patch-based AMR where the data struc-
ture is a collection of grids of varying sizes and accuracies embedded the ones
in the others [33, 26] and the fully-threaded tree AMR where the points or
cells (or groups of points or cells) are stored in the nodes or in the leaves of
a large tree structure [6, 22, 31, 32, 36]. We use this latest method.
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Other adaptive methods rely on the discretisation in functional bases:
finite elements [25], wavelets [8] or hierarchical bases [4]. Sparse grids [30]
enters this latest class of adaptive technics dealing with high dimensionality
thanks to hyperbolic –anisotropic– bases. This scheme allows to represent
structures having the same size as the grid when the number of dimensions is
large [5]. But it has to be associated to AMR technics to simulate multiscale
phenomena.

Passing from the classical two and three dimensional AMR to a more
exotic six-dimensional one forces to have an efficient implementation and to
adopt simplified numerical methods. Hence we propose to apply a straight-
forward recipe with the simplest numerical tools: Eulerian discretisation,
polynomial interpolation and finite differences for hyperbolic partial differ-
ential equations. In order to avoid dissipation, we also enforced the use of
high order –at least third order– schemes for the convection.

In the first part we describe the point-value/interpolet-expansion dual-
ity and the AMR finite differences discretisation. In the second part we
introduce and detail the adaptivity process. And finally, in the numerical
experiments, we apply this AMR method to Vlasov-Poisson equations sim-
ulations in two, four and six dimensions: collisionless plasma in physics and
gravitational systems in astrophysics.

2 Numerical scheme

2.1 Point value discretisation, interpolet expansion

We consider a function f : Ω 7→ R, x → f(x) with Ω = [0, 1]d and periodic
boundary conditions. In the frame of finite differences, we assume we know
f at points of the type (xλ)λ∈Λ indexed by λ = (j, k1, . . . , kd), j ≥ 0 and
0 ≤ ki < 2j ∀i ∈ [1, d], and defined by:

xλ = (2−jk1, . . . , 2
−jkd).

We set ΩΛ = {xλ, λ ∈ Λ}. We notice that x(j,k1,...,kd) = x(j+1,2k1,...,2kd), so
the set Λ may contain different copies of one point.

We part the set Λ into sets Λj containing the indices of the level j i.e.
such that λ ∈ Λj =⇒ λ = (j, k1, . . . , kd). We put Ωj = {xλ, λ ∈ Λj}.
Hence

Ωλ =
⋃
j≥0

Ωj .

The intersections Ωj ∩ Ωj+1 may not be empty.
For a given j, the set Ωj may not gather all the points of Ωλ which

can be written (2−jk1, . . . , 2
−jkd). But we require that if one of the ki of

λ = (j, k1, . . . , kd) is odd and λ ∈ Λ then λ remains to Λj . We also require
that if λ = (j, k1, . . . , kd) ∈ Λj and (j + `, 2`k1, . . . , 2

`kd) ∈ Λj+` for ` ≥ 0
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then (j + m, 2mk1, . . . , 2
mkd) ∈ Λj+m for all m ∈ [0, `]. It corresponds to

having a fully-threaded tree.

Remark 2.1 For sake of simplicity of the algorithms, we impose that all
the sets Ωj be self-sufficient regarding the computations: the interpolation
and the differentiation at points in Ωj call point values from Ωj exclusively.
Hence the transfer of information between the levels j − 1 and j is carried
out only through common elements of the sets Ωj−1 and Ωj i.e. Ωj−1 ∩ Ωj.

The function f whose point values are known at (xλ)λ∈Λ is uniquely
decomposed into the interpolet hierarchical basis (Φλ)λ∈Λb

where the set Λb
is such that ΩΛb

= ΩΛ and for all λ = (j, k1, . . . , kd) ∈ Λb at least one ki is
odd:

f(x) =
∑
λ∈Λb

dλΦλ. (1)

The multi-dimensional interpolet is defined as a tensorial product of one
dimensional interpolets:

Φλ(x) = ϕj k1(x1)× · · · × ϕj kd(xd).

We use the familiar wavelet notation ϕj k(x) = ϕ(2jx− k). The interpolets
(ϕj k) are interpolant scaling functions: ϕ(0) = 1 and ϕ(k) = 0 ∀k 6= 0.
The algorithm transforming (f(xλ))λ into (dλ)λ and vice versa has a linear
complexity. We refer to [16] and the Appendix D for more details.

The expansion (1) allows a straight-forward projection along e.g. x1. As

f(x) =

jmax∑
j=0

∑
k1,...,kd

dj,kϕj k1(x1)× · · · × ϕj kd(xd)

and
∫
x ϕj k(x) dx = 2−j

∫
x ϕ(x) dx = 2−j , then

∫
x1
f(x) dx1 =

jmax∑
j=0

∑
k2,...,kd

∑
k1

dj,k

∫
x1
ϕj k1(x1) dx1

ϕj k2(x2)×· · ·×ϕj kd(xd)

=

jmax∑
j=0

∑
k2,...,kd

2−j

∑
k1

dj,k

ϕj k2(x2)× · · · × ϕj kd(xd).

2.2 High order interpolation

During the refinement process, the sets (Ωj) are built respecting the fol-
lowing rule: for a given j, any point of Ωj is part of a cube formed by 5d

adjacent points of Ωj whose corners remain to Ωj−1 ∩ Ωj . An instance of
such sets (Ωj) is presented in two dimensions in Fig. 1.
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level j+2

level j+1

level j

Figure 1: Refinement of a two dimensional grid: on the left the refinement
process, on the right the resulting adaptive grid.

The results of the computations at level Ωj−1 are transmitted to the
level Ωj through Ωj−1 ∩ Ωj . And the 5d cube structures allow order three
interpolation from level Ωj−1 to level Ωj , using the following formulas:

I3,r f(x) =
3 f(x− h) + 6 f(x+ h)− f(x+ 3h)

8
, (2)

or its symmetric form, the letters r and l in I3,r and I3,l standing for right
and left:

I3,l f(x) =
−f(x− 3h) + 6 f(x− h) + 3 f(x+ h)

8
. (3)

When it is possible we apply the fourth order interpolation inside Ωj :

I4 f(x) =
−f(x− 3h) + 9 f(x− h) + 9 f(x+ h)− f(x+ 3h)

16
. (4)

Fig. 2 represents the different cases when the interpolations I3,r, I3,l and I4

are applied.

centered 4th order I 4

I
3,r

I
3,l

left 3rd order

right 3rd order

Figure 2: Third and fourth order interpolation in the one dimensional case.

In multi-dimensional simulations, the interpolation operates in a ten-
sorial way, see Fig. 3. Hence, each point of the set Ωj \ Ωj−1 calls one
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interpolation involving maximally four points. As a result the complexity
of the interpolation algorithm remains linear with respect to the number of
points independently of the dimensionality.

1

1

2 22 2 2

1

Figure 3: Interpolation of the finer-level green points by the coarser-level
black points with direction by direction operations: we first interpolate hor-
izontally and then vertically.

2.3 High order differentiation

To compute the differentiation of the function f in the i direction, many
finite differences can be applied but few does not create any downwind in-
stability in the context of Adaptive Mesh Refinement. To construct our
scheme we also take into account the data structure and the computational
complexity which shall remain independent of the dimensionality.

We navigate through the sets Ωj for j going from 1 to jmax. The set
Ω1 is a uniform grid with 2d points. We apply the fifth order differentiation
with periodic boundary conditions. Then we apply recursively the following
operations for j from 2 to jmax:

• we transfer the values obtained at the points remaining to the inter-
section Ωj−1 ∩ Ωj from Ωj−1 to Ωj ,

• we interpolate all the points in Ωj from the values in Ωj−1 ∩ Ωj ,

• we compute the differentiation using a fifth –when possible– or third
–when fifth not possible– order scheme.

We apply the following differentiations formula:

• the fifth-order upwind formula with a stencil of six points:

Df(x)

=
2 f(x+ 3h)− 15 f(x+ 2h) + 60 f(x+ h)− 20 f(x)− 30 f(x− h) + 3 f(x− 2h)

60h
(5)
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• the third-order upwind formula with a stencil of four points:

Df(x) =
−f(x+ 2h) + 6 f(x+ h)− 3 f(x)− 2 f(x− h)

6h
(6)

• and the third-order differentiation with a stencil of three points:

Df(x) =
5 f(x+ h)− 4 f(x)− f(x− h)

4h
− 1

2
Df(x+ h) (7)

where Df(x+h) was computed at level j− 1 and transmitted to level
j by interpolation.

We summarize the different cases of application in Fig. 4. The numerical
errors resulting from these differentiation schemes are presented in Appendix
C.

wind
Interpolation

(5) (3) (3)(3) (5)

(4 points)

(5) (5)

(4 points)

(6 points)

(3 points + 1 derivative)

stencils

Figure 4: Overview of the different cases for the differentiation. The numbers
above the points refer to the order of precision.

Choosing the fifth order when possible comes with little cost (less than
20%) and improves the precision and the conservations.

2.4 Numerical scheme for the convection in the adaptive grid

Using the grid described in Part 2.1, we propose a numerical scheme for the
convection equation (8) which tackles two risks of instability:

• the upwind instability,

• the CFL1 condition.

1CFL are the initials of the three authors of the founding paper [10] which first described
and analyzed a stability condition linking the time step to the space step when numerically
solving hyperbolic equations.
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We avoid downwind instabilities by applying upwind formulas at all the
points of the AMR grid.

Let us consider the following equation for the convection of a distribution
function f by a velocity function v : Td 7→ Rd:

∂tf(t,x) + v(x) · ∇f(t,x) = 0 (8)

where ∇f = (∂1f, ∂2f, . . . , ∂df) and v · ∇f =
∑

i vi∂if .
The transport gradient is computed by adding successively the d func-

tions vi(x)∂if(t,x): v(x) · ∇f(t,x) =
∑d

i=1 vi(x)∂if(t,x).
The CFL condition is optimized in order to benefit from the adaptivity

of the grid. For the time increment, we apply a fourth-order Runge-Kutta
scheme [23] to the equation (8). It is detailed in Appendix B. For this
scheme associated with an upwind differentiation and a space step h, the
CFL condition on the time step δt is usually given by:

δt ≤ C h

maxx∈Ω ‖v(x)‖`1
(9)

with the constant C approximately equal to 1.73 (from [14] and experiments
by the author) and ‖v(x)‖`1 =

∑d
i=1 |vi|. In the case of an adaptive grid,

the space step h of the grid depends on the position x in the computa-
tional domain Ω. As already noticed in [26] this allows to mitigate the CFL
condition. Hence the CFL condition becomes:

δt ≤ C min
x∈Ω

h(x)

‖v(x)‖`1
, (10)

In phase-space coordinates, this condition on the time stepping is particu-
larly advantageous since the high velocity parts of the grid generally present
a low refinement: usually h(x) >> h(0) for x such that ‖v(x)‖ >> ‖v(0)‖,
so the time step δt remains large independently of maxx∈Ω ‖v(x)‖`1 .

3 Adaptivity

3.1 Principles and heuristics

In the method proposed in Sec. 2.1, points are disposed on a Cartesian grid
which refines locally in an isotropic and dyadic way –i.e. one refinement
corresponds in the division by two of the step in all the directions, so in
d-dimensional spaces on point refines into 2d points. In our implementation
in C programming language, the points are stored in a tree structure (see
Appendix A). One node of the tree corresponds to a cube of 2d points.

The grid is refined according to a refinement criterion which relates the
mesh step to the local needs of approximation evaluated through e.g. the
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absolute value of a derivative. Ideally, as the finite difference or finite vol-
ume methods have an approximation error depending on a derivative of a
certain order, we would take the magnitude of this derivative as a refinement
criterion.

For instance the quality of the finite difference Eq. (6):

−f(x+ 2h) + 6 f(x+ h)− 3 f(x)− 2 f(x− h)

6h
= f ′(x)− h

3

12
f (4)(x)+o(h3),

applied to the C4 regular function f depends on the fourth derivative f (4).
Unfortunately these derivatives of high order are not solved by the

scheme and are computed incorrectly. This makes the refinement scheme
unstable, versatile and unpredictable because the criterion is much to sen-
sitive to numerical error.

Thus AMR users apply criteria on derivatives of lower orders such as:
the derivative of order zero, e.g. in [36] the AMR maps a mass reparti-
tion function and each cell contains the same amount of mass, the gradient
as in Harten’s Discrete Framework [24, 32] or, more recently, the second
derivatives as in [38] and here.

Such criteria allow to automatically refine or derefine the computational
grid according to the local regularity of the function to map and the order
of the method.

The exact form of the chosen criterion is decided based on the order of
the scheme, on the characteristics of the simulation such as the regularity of
the solution, the presence or not of shocks and the emergence of multiscale
structures –e.g. filaments– that is to say, generally speaking, on the features
pertinent for the computation or the physics.

We opted for the thresholding of the residue of a second order approxi-
mation: the coefficients dλ in the expansion Eq. (1) using linear interpolets
(see Appendix D). Applied to a smooth function f , the absolute value wj(x)
of the residue can be expressed as:

wj(x) = h2
∑

i∈{1,...,d}

|∂2
i f(x)|+ o(h3)

with h = 2−j . In the following we replace the local sum of the derivatives by
|f (2)(x)|. Then the refinement level is fixed locally by the smallest j(x) ∈ N
such that:

2−αj(x)wj(x) ≤ ε
with α ∈ R and ε > 0 fixed parameters.

In order to develop an heuristic leading to an adequate choice of the
parameter α we make the following assumptions:

• the solution is C∞, which is true for Vlasov-Poisson equations starting
from a C∞ initial condition,
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• the error of the numerical method is dominated by the third order
approximation in space controlled by the fourth derivative of the so-
lution,

• at any given time the fourth derivative of the solution is proportional to
the second derivative over all the phase-space domain. The idea behind
this assumption is that one structure at one unknown scale has to be
meshed at the right scale. But this is the most questionable point:
although the second derivative is a better choice than the absolute
value or the gradient and has the same parity, it may arbitrarily differ
from the fourth derivative.

If we want to minimize the L∞ error of the numerical approximation, we
consider the following approximation –including a constant multiplier– of
the error:

e(x) = K h(x)3 |f (4)(x)| ∼ h(x)3|f (2)(x)| ≤ ε

with h(x) = 2−j(x), then from wj(x) = h(x)2|f (2)(x)| we find the condition

h(x)wj(x) = 2−j(x)wj(x) ≤ ε

i.e. α = 1 which does not depend on the number of dimensions.
If we consider the minimization of the Lq-norm of the error of the nu-

merical approximation, Eq:

Eqq =

∫
[0,1]d

e(x)q dx ∼
∫

[0,1]d
h(x)3 q|f (2)(x)|q dx,

while the number of points of the discretisation, given by

N =

∫
[0,1]d

h(x)−d dx,

is considered fixed. This is a problem of minimization under a constraint.
It is solved thanks to the Lagrange multiplier λ0 ∈ R such that ∀g ∈
C∞([0, 1]d),∫

[0,1]d
3q h(x)3 q−1g(x)|f (2)(x)|q dx+ λ0

∫
[0,1]d

(−d)h(x)−d−1 g(x) dx = 0.

that is to say

hd+3 q(x)|f (2)(x)|q =
λ0 d

3q

or
2
−( d

q
+1)j(x)

wj(x) = ε

which leads to α = 1 + d
q . This advocates a flatter refinement in higher

dimension.
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Had we considered an approximation of (p − s)-th order of the s-th
derivative of the solution leading to an error:

e(x) = K h(x)p−s |f (p)(x)|

and an estimation based on a residue of m-th order for the refinement:

wj(x) = K ′ h(x)m |f (m)(x)|,

minimizing the Lq-norm of the error on the s-th derivative of the solution
leads to the choice

α = p−m− s+
d

q
.

In our case, we have m = 2, p = 4 and s = 1: we aim at minimizing the Lq-
norm of the error on the gradient of the solution (s = 1) in order to minimize
the Lq-norm of the error on the solution when simulating the advection.

Would we just have the rigorously correct estimation of the error with
m = p, then the choice of α would be directly connected to the wavelet
estimator from [8]:

‖f‖Bs
q(Lp) ∼ ‖

(
2s j2

d j( 1
2
− 1

p
)‖(βλ)λ∈∆j

‖`p
)
j≥0
‖`q

with |βλ| = 2−
d
2
j(x)wj(x) a L2 normalization of the residuals, ∆j ∼ Ωj and

p = q.
Minimizing the Bs

p(L
p)-norm of the error by thresholding the coefficients

leads to discarding the coefficients βλ such that 2
(s+ d

2
− d

q
)j(x)|βλ| < ε, i.e.

2
(s− d

q
)j(x)

wj(x) < ε, which corresponds to the choice α = −s+ d
q .

3.2 Details of the method for refining and coarsening

Assume we have defined an α ∈ R relevant for the numerical experiment
and an ε > 0 adapted to the available computer memory.

First, in a bottom-up algorithm –for j going from jmax to 2– we compute
the residue of the linear interpolation of the level Ωj by the level Ωj−1. It
is equivalent to a transform in the isotropic second-order hierarchical basis
Eq. (1). This basis is composed of linear splines.

Then we gather the residues dj,k′ from Eq. (1) of the points 2−jk′ inside
cubes centered on points of the type 2−j(2`1 + 1, . . . , 2`d + 1) as indicated
in Fig. 5. For k = (2`1 + 1, . . . , 2`d + 1), this yields a refinement weight
associated to this cube:

w2
j,k =

∑
e∈{−1,0,+1}d

d2
j,k+e.

Then we apply the following refinement instructions in this order:
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Figure 5: Elementary cube for the refinement.

• if wj,k > 2αjε, the points inside the area are refined (if it is not the
case already); the cube of size (2h)d and containing 3d points –with a
step equal to h– is refined into a cube of the same size but containing
5d points –with a step equal to h

2 ,

• if wj,k > 2αj−1ε, then the points inside the area are preserved; we also
activate (create or preserve) the neighbors located under the wind
assuring the inclusion in a 5d point cube necessary for the third order
interpolation Eq. (2) and (3),

• if a point 2−jk is neither active at level j nor at finer levels then it is
removed from the level j,

Sometimes we also fix a maximum level of refinement jMax and we impose:
j ≤ jMax.
The larger α, the closer the grid will be to a uniform grid. Varying ε allows
to increase or decrease the number of points in the grid in order to cope with
the memory storage limit of the computer (see the numerical experiments
in Sec. 4).

4 Numerical results

In this Section we test the numerical scheme developed in this paper in
various situations: the transport of a Gaussian in a six-dimensional box,
two plasma simulations, the bump-on-the-tail instability in one dimension
(two-dimensional phase space) and the two stream instability in 2D (four-
dimensional phase space), and an astrophysics simulation, the merging of
two halos of stars in the six-dimensional phase space.
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4.1 Convection and stretching of a Gaussian in six dimen-
sions

The numerical experiment consists in convecting a Gaussian function f0(x) =

exp
(
−‖x−x0‖2

2σ2

)
with x0 = (1

2 , . . . ,
1
2) in the six dimensional box T6 = [0, 1]6

with periodic boundary conditions, with the velocity field:

v(x1, x2, . . . , x6) =


1

cos(2πx1 + 1)
cos(2πx1 + 2)

...
cos(2πx1 + 5)

 . (11)

For any particle at position X(t) = (Xi(t))1≤i≤6 at time t = 0, the constant
velocity v1 = 1 gives X1(t) = X1(0) + t and, for 2 ≤ i ≤ 6,∫ 1

t=0
vi(X(t)) dt =

∫ 1

t=0
cos(2πt+ 2πX1(0) + i− 1) dt = 0.

Hence the Gaussian comes back with its initial shape to its initial position
at integer t. More generally, the exact solution is given by:

f(t,x) = f0(x1 − t, x2 −
1

2π
(sin(2πx1 + 1)− sin(2π(x1 − t) + 1)) , . . .

. . . , x6 −
1

2π
(sin(2πx1 + 5)− sin(2π(x1 − t) + 5))) (12)

so we can compute the error exactly.
We carried this test out thanks to a code written in C and parallelized

with Open-MP. This experiment required an average of 4e+8 points over 320
time steps. It took 34 hours on the 16 threads of a 2.20 Ghz Intel Xeon E5-
2660 processor with 64 Go RAM memory. This approximately corresponds
to a speed of 65, 000 points time-steps per second per thread.

In Fig. 6, we represent a two-dimensional projection onto (x1, x2) of the
solution and of the adaptive grid. The maximum refinement level (in dark
green) corresponds to a 1286 uniform grid equivalent accuracy. The time
step is taken constant equal to

δt =
1

320
close to the CFL maximum C

h

‖v‖`1
≈ 1

344

with C = 1.73, h = 2−7 and ‖v‖`1 ≈ 4.642.
Since we want to minimize the L∞ error, we take the thresholding pa-

rameter α equal to 1 (see Sec. 3.1). The initial value of ε is equal to 4e–4
and the standard deviation of the Gaussian σ = 0.1.

In Fig. 6, we observe that the refinement of the grid follows the stretched
Gaussian. The L∞ error primarily appears at the boundaries between the
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t = 0 t = 0.2 t = 0.7 t = 1

min 0 max

Figure 6: Evolution of the solution in projective view in the (x1, x2) plan
(first row) and of the adaptive grid (second row) for the convection of a
Gaussian in six dimensions at times t = 0, t = 0.2, t = 0.7 and t = 1.

different levels of refinement ahead of the Gaussian. As expected, the Gaus-
sian comes back to its original position.

Regarding the color scale of Fig. 6, the dark blue color stands for zero
and the dark red for the maximal value. This color scale is used in all the
other figures representing a distribution function.

The L∞-norm of the error remains inferior to 6% of the L∞-norm of the
gaussian as shown in Fig. 7. Relative error means the ratio between the
norm of the error and the norm of the gaussian function. In this figure, we
also represent the L2-norm of the error, the minimum value of the solution
(which shows that the scheme does not conserve the positivity), the thresh-
old ε used to form the adaptive grid, the number of points contained in the
grid and the corresponding memory needs.

The memory use coincides with the number of allocated nodes (see Ap-
pendix A) which is more or less proportional to the number of active points.
In order not to exceed the memory limit and optimize the memory use, we
bound the number of nodes of the tree (see Appendix A) with a maximum
and a minimum. In the present test case the maximum of nodes is taken
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Figure 7: Error analysis, the curve for the threshold ε was rescaled fo fit the
scale of the other curves.

equal to 1e+7 and the minimum represents 80% of the maximum. Each
time the number of tree nodes exceeds the maximum we fixed, the threshold
ε is increased by 10%, leading to a drop in the number of allocated nodes
and memory needs. This explains the saw-teeth aspect of the curve plotting
the number of points, for t ∈ [0, 0.5]. On the contrary when the memory
need decreases, we take advantage of this to increase the accuracy and we
decrease the threshold by 10%. This is what happens in the second part of
the graph, for t ∈ [0.5, 1].

The error increases dramatically when the grid is at its minimum of
refinement, with a high threshold ε and a major stretching of the solution,
around t = 0.5.

In Fig. 8, we plot second-order estimates of the mass, of the L2-norm
and of the maximum of the solution. They indicate a precision of 1.5%.
For a six-dimensional simulation. This is encouraging. The curves represent
relative values compared to the initial one, so they equal 1 at time t = 0.

The fast oscillations of the maximum correspond to the shifting of the
actual maximum of the solution from a point of the mesh to an other one.

The third-order convergence of the scheme is verified by comparing dif-
ferent runs varying the number of points. For a method of pth-order, and
since N ∼ h−6, the error should satisfy:

e = C hp = C (N1/6)−p = C
1

Np/6
.

Experimentally, we run the experiment until t = 0.1 and compare the nu-

14



n
o

rm
a
li

z
e
d

 v
a
lu

e
s

time

maximum

L2 norm

mass

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.985

0.990

0.995

1.000

1.005

1.010

1.015

Figure 8: Conservation analysis.

merical result with the exact solution. We plot the error in L∞-norm and
L2-norm for numbers of points from 6e+6 to 4e+8 in Fig. 9.
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Figure 9: Drop of the error in L∞ and L2 norms. Both x and y axis have a
Log10 scale. The line has a slop equal to −1

2 which corresponds to a third
order convergence of the scheme.

In Fig. 9, the L∞ norm of the error can be compared with L∞ norm of
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the Gaussian equal to one (or zero in Log10). The L2 norm of the error was
multiplied by 100 in the plot and can be compared with the L2 norm of the
Gaussian approximatively equal to 5.6e−03 (or −2.25 in Log10).

The L∞ norm of the error may increase drastically when interpolating
new points since the interpolation has same third order as the convection
scheme. This explains the jumps in the L∞ norm of the error in Fig. 7, and
the irregularity of the convergence plot Fig. 9.

4.2 Application to plasma physics

In Plasma physics and astrophysics, most of the Vlasov-Poisson simulations
rely on Particle-In-Cell methods [9, 12] as they allow 6-dimensional phase-
space simulations at a reasonable computational cost. In these methods, the
distribution function is coarsely discretized with Dirac functions (particles)
whose positions evolve through Lagrangian schemes. Recently, grid-based
Eulerian schemes have been developped [20] but they rarely pass the curse
of dimensionality [30] and most of the time do not exceed four dimensions
for the phase-space [37].

Two-dimensional phase space case: the bump-on-tail instability
In this paragraph we simulate the bump-on-tail instability with our AMR
scheme. In [26], the authors tested a block-structured AMR using a high-
order finite-volume scheme on this case. We obtain similar results.

We consider a density function f : R2d → R+, (x,v) 7→ f(x,v) subject
to the Vlasov-Poisson equation:

∂tf + v · ∇xf + E(t,x) · ∇vf = 0 (13)

with
E(t,x) = ∇xφ(t,x), (14)

∆xφ(t,x) =

∫
v∈Rd

f(t,x,v) dv −
∫
x,v∈Rd

f(t,x,v) dv dx. (15)

To make the following simulation, f is taken periodic in the x variable, and
the dimension d = 1. The simulation box is (x, v) ∈ [−10

3 π,
10
3 π]× [−10, 10].

The initial condition is given by:

f0(x, v) =

(
0.9√
2π
e−

v2

2 +
0.2√
2π
e−4(v−4.5)2

)
.

We integrate f in eq. (15) by decomposing the discrete solution f in a linear
spline hierarchical basis Eq. 1 and summing the coefficients in the velocity
direction as indicated in Sec. 2.1. Then eq. (15) and (14) are solved thanks
to one-dimensional Fourier transforms.
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t = 0 t = 22 t = 50 t = 100

Figure 10: Evolution of the solution (first row) and of the adaptive grid
(second row) for the bump-on-tail instability (1D).
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Figure 11: Evolution of the number of grid points in the AMR.

The simulation is plotted in Fig. 10 which shows a very good agreement
with the results presented in [26]. We observe that the fine mesh –dark violet
is equivalent to a 20482 uniform mesh– follows the filaments accurately.

In Fig. 11 we observe that the number of points vary from 50, 000 at the
beginning to 370, 000 at the maximal complexity. The refinement parame-
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ters were fixed to α = 1.7 and ε = 1e–6.

uniform grid

AMR grid
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Figure 12: Plots of the maximum absolute value of the field E for two
instances of the bump-on-tail instability: with an uniform grid and with an
AMR grid.

The plot of the maximal electric field maxx |E(t, x)| differs with the one
obtained in [26] with no obvious explanation. The uniform grid experiment
was done with 2562 points using a fourth-order in time and fifth-order in
space finite difference scheme.

Fig. 13 illustrates important defects of the proposed AMR method for
solving the Vlasov-Poisson equations: it does not conserve the mass and it
makes negative values appear.

In Fig. 14 we can see that although the kinetic energy and the potential
energy tend to compensate each other, the total energy drifts away from its
initial value. In contrast, the uniform grid experiment conserves the mass
and the total energy exactly: the relative variations stay below 1e–6 i.e. the
computer accuracy. The negative values it creates stay below a relative 0.1%
to compare with the 8% appearing in the finite differences AMR experiment
(see Fig. 13).
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Figure 13: Relative variations (∆f/f) for the mass, the total energy and the
maximum value of the distribution function. These should remain constant.
For visualization purpose, the mass variation was multiplied by ten.
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Figure 14: Variation of the kinetic (Ec) and potential (Ep) energies. The
kinetic energy was vertically shifted by −23.
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Four-dimensional phase space case: the two steam instability We
apply the present scheme to a four-dimensional test case. Hence we be-
gin to exploit the novelty of our AMR scheme. For instance such a high
dimensionality is neither treated in [26] nor in [33].

In the simulation box (x, y, u, v) ∈ [−10π
3 , 10π

3 ]2 × [−3π, 3π]2 with peri-
odic boundary conditions, we consider the initial distribution function:

f0(x, y, u, v) =
7

4π
exp

(
−u

2 + 4 v2

8

)
sin2

(u
3

)
(1 + 0.05 cos(0.3x)) (16)

Figure 15: Phase space view of the initial condition Eq. (16). Cuts at zero
along (x, u) (first row) and (u, v) (second row) of the distribution function
and of the adaptive grid.

This initial distribution, represented in Fig. 15, was chosen in order
to maximize the two stream instability [18]. Initially, it is discretized with
30e+6 points and has a maximum level of refinement equivalent to a 1284

uniform grid. The thresholding parameters are taken as follows: α = 1.5
and ε = 2.4e–5 initially.
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Figure 16: Phase space view of the numerical solution at time t = 12. Same
cuts as Fig. 15.

in Fig. 16 we represented the numerical solution at t = 12 when the
instability begins to develop. The maximum refinement goes up to 2564

(the red points in Fig. 16 right column). The number of points increases
to 62e+6. And the threshold ε begins to grow, and is now ε = 3.9e–5. We
have limitated the number of nodes to 5e+6 with maximally 24 = 16 active
points each.
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4.3 Six-dimensional astrophysics case: the merging of two
halos of stars

In order to apply the numerical scheme to a six-dimensional phase space
problem, we switch from plasma physics to astrophysics. In plasma physics
the distribution function tends to occupy the whole three-dimensional phys-
ical space while in the gravitational case it collapses, allowing the adaptive
scheme to refine only locally in space.

Hence the adaptive scheme refines the grid locally in the six-dimensional
phase space and not only in the velocity direction as it is the case in plasma
physics (see Fig. 15 and 16). And we are able to simulate the gravitational
Vlasov-Poisson equations at a reasonable cost.

For a collisionless self-gravitating system such as a halo of stars or dark
matter, the distribution function of matter in the phase space (x,v) ∈ R6,
with x = (x, y, z) and v = (u, v, w)

f :
R× R3 × R3 → R+

t,x,v 7→ f(t,x,v)
(17)

obeys the gravitational Vlasov-Poisson equations:

∂tf + v · ∇xf + E(t,x) · ∇vf = 0 (18)

E(t,x) = −∇xφ(t,x) (19)

∆xφ(t,x) = 4πGρ(t,x) (20)

where the density function ρ is given by:

ρ(t,x) =

∫
R3

f(t,x,v) dv. (21)

Comparing with plasma equations (14) and (15), please note the sign ”–”
in Eq. (19) and the factor 4π (not gone when the equation are nondimen-
sionalized) in Eq. 20.

These equations admit stationary solutions [2]. One of them, the Plum-
mer model, was successfully tested by Takao Fujiwara in [21] using the sym-
metries of the problem in a two-dimensional plus one invariant simulation.
It is given by the following distribution function:

f(r, ‖v‖) =
3M

7π3a3

(
2

(
1 +

(r
a

)2
)−1/2

− ‖v‖2
)7/2

(22)

if 2

(
1 +

(r
a

)2
)−1/2

− ‖v‖2 ≥ 0

and f(r, ‖v‖) = 0 everywhere else.
We noted r2 = x2 + y2 + z2 and ‖v‖2 = u2 + v2 + w2.
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Then the potential function is given by:

φ(r) = −GM
a

(
1 +

(r
a

)2
)−1/2

, (23)

and the density function by:

ρ(r) =
3M

4πa3

(
1 +

(r
a

)2
)−5/2

. (24)

In these formulas, G denotes the constant of gravity, M the total mass and a
a length parameter. In the following simulations, these constants are taken
equal to 1.

This distribution function Eq. (22) is compactly supported in velocity
but not in space.

In Fig. 17, we represent this stationary solution in an adaptive grid. The
maximum level of refinement corresponds to a 2566 uniform grid (in red).

Figure 17: The Plummer Model: a two-dimensional cut (on the left), a
projection (on the middle) and the corresponding adaptive grid (on the
right) in (x, u)-view.

We apply the present adaptive scheme to the six-dimensional merging
of two spherical Plummer models. Hence we simulate the ‘collision’ of two
halos of stars which, when separated, form stable systems.

The convection is solved using the scheme described in Sec. 2.4, the pro-
jection using (1) at second-order, and the gravitational forces are computed
in the three-dimensional Fourier space on a uniform grid of the smallest
scale (i.e. with FFT in a 2563 grid). The time step δt is computed at the
beginning of each Runge-Kutta cycle by the CFL formula (10) with C = 1.
This value is below the CFL constant for uniform domains C = 1.73. At
the end of each Runge-Kutta cycle, we let the mesh evolve as described in
Sec. 3.2 with α = 1.7 and ε = 2.5e–5 at t = 0 and we prescribe the maximal
number of nodes at 5e+6. In order to exploite the memory optimally, we
fix the minimum number of nodes at 70% of this maximum. Each node
contains a maximum of 26 = 64 active points.
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Figure 18: Initial conditions for the interaction of two Plummer models.

The initial condition is schematized in Fig. 18. Each sphere represents a
stationary solution Eq. (22). The size of the box is [−12, 12]3× [−8, 8]3. We
apply periodic boundary conditions. In order to visualize the evolution of
the numerical solution, we make a cut in the (x, y)-direction at the maximum
of the solution (x0, y0, z0, u0, v0, w0) = arg max(f), so we plot f(x0 +x, y0 +
y, z0, u0, v0, w0) for (x, y) ∈ T2 in Fig. 19, first row. The color scale is the
same as in Fig. 6.

In Fig. 19, we observe rings of the phase space localized in the physical
domain at time t = 33.6. The mesh follows the details of the solution and
adapts automatically.

In Fig. 20, we see the collision and merging of the two spheres in a
three-dimensional (x, y, z) projection.

In the phase space, Fig. 21, we can observe this phenomenon. Contrarily
to the physical space Fig. 20, we see in the first row Fig. 21 (and less in
the second row) that the two spheres never totally merge for the time of
observation t ∈ [0, 60]. Only when the small scales are under-resolved at
time t = 20 does the numerical mixing begin: the entropy increases (Fig.
22) and later the maximum of f also increases.

In Fig. 22, we plot:

• the mass

M(t) =

∫
x,v

f(x,v, t) dx dv (25)

• the L2-norm

‖f‖2(t) =

(∫
x,v

f(x,v, t)2 dx dv

) 1
2

(26)
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t = 15.0 t = 33.6 t = 49.2

Figure 19: Collision of two Plummer spheres, a cut in the (x, y)-direction
(first row), the projection onto (x, y) (second row) and the adaptive grid
(third line) at times t = 15.0, t = 33.6 and t = 49.2.

• the entropy

S(t) =

∫
x,v
−f(x,v, t) ln(f(x,v, t)) dx dv (27)

which are conserved quantities for the Vlasov-Poisson equations.
In Fig. 23 we also plot
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t = 0.6 t = 12.6

t = 15.6 t = 19.8

t = 25.8 t = 49.2

Figure 20: Three dimensional view in physical space of the collision of two
Plummer spheres at times t = 0.6, 12.6, 15.6, 19.8, 25.8, 49.2 (this visualiza-
tion was realized thanks to the IFRIT 3D Data Visualization Open Source
software).

• the kinetic energy

Ec(t) =

∫
x,v

‖v‖2

2
f(x,v, t) dx dv (28)
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t = 15.0 t = 33.6 t = 49.2

Figure 21: View in the phase space of the collision of two Plummer spheres,
a cut in the (z, w)-direction (first row), the projection onto (z, w) (second
row) and the corresponding adaptive grid (third row) at times t = 15.0,
t = 33.6 and t = 49.2.

The mass is not conserved exactly but remains in a ±15% range. The
entropy increases reasonably (+25%) and this increase can be explained by
the usual numerical averaging of the filamentation [35].

Watching at the threshold evolution Fig. 23, we can distinguish five
phases:

1. for t ∈ [0, 12], the two spheres get close, the complexicity stays steady,
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Figure 23: Evolution of the threshold ε (normalized scale), the number of
points (×1e+8 for the scale), the kinetic energy Ec (normalized scale) and
the maximum of the time derivative |∂tf | (normalized scale).

2. for t ∈ [12, 15], first collision, the complexity surges and the kinetic
energy and the time derivative make a jump,
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3. for t ∈ [15, 19], the spheres recede one from the other, the complexity
even begins to decrease slightly,

4. for t ∈ [19, 24], the spheres interact anew, creating a complex situation,

5. for t ∈ [24, 60], damping, the solution decomplexifies, the threshold
decreases to retain more and more small scales while these are dissi-
pated by the numerical scheme or discarded by the resolution of the
grid.

The number of points peaks at a maximum of 200, 000, 000 triggering an
increase of the threshold ε, and then, for t greater than 30, it decreases to
a minimum if 140, 000, 000 which makes the threshold ε increse. Running
this experiment took 2, 638 time steps, and 226 hours of computation on
a 2.66GHz Intel Xeon X5650 (12 threads and 48 Go RAM memory). This
means an average speed of 42, 000 points time-steps per second per thread.

This experiment can be compared to the one presented in [37]. In this
paper [37], two King spheres interact in a 646 uniform mesh (∼ 6.87e+10
points, i.e. 300 times what we are using) applying a Positive Flux Conserva-
tion (PFC) scheme [19] which is a kind of finite volume method, associated
to a massive MPI/OpenMP hybrid parallelization on 1024 CPU cores on 64
nodes (i.e. 85 times the ressources we are consumming).

To further validate the AMR approach, we ran this six-dimensional nu-
merical experiment on an Extra Large node of the supercomputer Curie:
128 cores –this large amount of cores did not allow to increase the compu-
tational speed compared with 16 cores due to the limits of the efficiency
of the parallelisation– and 512 GB main memory allowing to fix to 1e+8
the maximum number of tree nodes. Each tree node can contain a maxi-
mum of 64 active points. The Curie Extra Large nodes have been formed
by grouping four S6010 bullx modules into a single shared-memory system,
using Bull’s Coherent Switch (BCS) novel architecture. BCS, an ASIC chip
designed by Bull provides a global, consistent view of main memory data
for all processors of the system [11].

For this experiment, a minimum threshold was fixed at εmin = 2e-6 and
the maximum number of nodes at 100e+6. The second thresholding pa-
rameter α was kept at α = 1.7. For t ∈ [0, 21.7], the number of nodes
stayed below 71.6e+6 and the threshold was not modified ε = εmin. It took
696 time steps to reach t = 21.7 and the number of active points reached
3e+9 (see Fig. 25). The result at t = 21.6 in Fig. 24 top right is visu-
ally satisfactory: the AMR automatically refines up to a 5126 uniform grid
equivalent accuracy (in dark red on Fig. 24 bottom right) in the areas where
filamentation appears.
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t = 15.0 t = 21.6

Figure 24: Collision of two Plummer spheres, a cut of the distribution func-
tion in the (z, w)-direction (first row) at (x, y, u, v) = (0, 0, 0, 0) and a cut of
the corresponding adaptive grid (second row). Simulation with fixed thresh-
old ε and up to 3e9 points on the supercomputer Curie from Idris (GENCI
project gen7437 (2015)).
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5 Conclusion

This work encourages the Adaptive Mesh Refinement approach to solve
the Vlasov equations. AMR provides a good accuracy even in the six-
dimensional case which was out of reach for the traditional Eulerian schemes.
The basic simplicity of the numerical scheme we used –finite differences and
third-order interpolation– caused some defects which must be corrected: the
mass and the energy are not conserved and under-resolved shock-like struc-
tures may deteriorate the solution.

This opens the way to further work: to cope with the conservation trou-
ble we can switch to Finite Volume schemes adapting the existing literature
e.g. [33] to the six-dimensional constraint, or we will continue with Inter-
polet/Finite Difference discretisation using fourth-order centered interpola-
tion and enforcing the mass conservation by correcting the finite difference
scheme. The shock and negative value problems may be resolved using lim-
iters and WENO schemes.

An other perspective is to further reduce the number of degrees of free-
dom by using six-dimensional Hyperbolic Wavelets [15] also called Sparse
Grids [5]. Although this entails new algorithmic and numerical difficulties,
it seems the best way to install six-dimensional AMR as a routine numerical
tool.
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Appendix

A Data structure and C encoding

The encodings for tree structures usually rely either on hash-tables of keys
referring directly to the positions of the nodes [6] either to real tree structures
built with pointers. In Fortran, these pointers are emulated thanks to tables
of indices [36].

Using C programming, we chose to implement the whole fully-threaded
tree structure. The basic element allocated in memory is the node. In di-
mension d, its building block is given by:

struct Node {
double tab[nb val][2d]; /* cube of simulation values, 2d points */

struct Node *prt; /* pointer to the parent node */

struct Node *chd[2d]; /* 2d pointers to the children */

struct Node *ngb[2d]; /* pointers to the neighbors */

int rgf; /* filiation rank */

unsigned long long flg; /* flag for the point current activation */

unsigned long long ldf; /* flag for the point previous activation */

int dir; /* direction of the wind */

int ell; /* parameter with different uses */

};

The tree formed by multiple nodes can be read through its parent con-
nection (see Fig. 27 left). Then a table ordered level by level (Fig. 27 right)
allows to perform the algorithms presented in the present manuscript. It
also permits Open-MP parallelization.

1

92

3

4
5

6 7

8

10

11

13

12

2

levels

node addresses

5

4

3

1 1

2 9

10 138

4 5 11 12

76

3

Figure 27: Accessing the nodes in the tree structure: graph transversal on
the left, table of node addresses ordered level by level on the right.
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B Algorithms

Three main algorithms occur in the AMR method we present, the first two
rely on the level by level tables, Fig. 27 right:

1. Bottom-up computation in the tree. For instance it is used to up-
date the results obtained at coarser level with results obtained at finer
levels. These latter have a better accuracy (maximum level of re-
finement). It is done by transferring from level j to level (j − 1) the
contain of the points remaining to Ωj−1∩Ωj for j from jmax to 2. Pass-
ing from the point values to the expansion Eq. (1) is also a bottom-up
operation.

2. Top-down computation in the tree. As indicated in Part 2.3, we com-
pute the finite difference differentiations for the level j going from level
1 to level jmax. Computing the point values from the expansion Eq.
(1) is a top-down computation.

3. Fourth-order Runge-Kutta scheme [23] applied to the equation (8):

k0 = −v(x) · ∇fn, fn(1) = fn + δt
2 k0

k1 = −v(x) · ∇fn(1), fn(2) = fn + δt
2 k1

k2 = −v(x) · ∇fn(2), fn(3) = fn + δt k2

k3 = −v(x) · ∇fn(3),

k = k0
6 + k1

3 + k2
3 + k3

6 , fn+1 = fn + δt k

. (29)

Then the iterative process for one time step unfolds as follows:

(a) we compute the time step δt using Eq. (10),

(b) we compute k sequentially adding the contributions from k` for
` ∈ {0, 1, 2, 3} while fn(`) is regularly updated using Eq. (29),

(c) we make fn+1 = fn + δt k,

(d) we compute the weight of the refinement details: w(fn+1),

(e) we refine and prune the tree using w(fn+1) and the refinement
algorithm from Sec. 3.2,

(f) we loop to (a).

Applying this algorithm necessitated six storages for each point:

• room 1 −→ fn,

• room 2 −→ k and w(fn),

• room 3 −→ vi,

• room 4 −→ vi∂if ,
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• room 5 −→ k`,

• room 6 −→ fn(`).

The resulting scheme is third-order in space and fourth-order in time.
Passing to Vlasov-Poison equation just necessitates to compute v and
does not need extra storage.

C Finite differences and interpolation

Here we summarize the interpolations and finite differences we used with
the corresponding errors for sufficiently smooth functions:

• Differentiation

– fifth-order upwind finite difference:
Df(x) =

2 f(x+ 3h)− 15 f(x+ 2h) + 60 f(x+ h)− 20 f(x)− 30 f(x− h) + 3 f(x− 2h)

60h
(30)

= f ′(x) +
h5

60
f (6)(x) +O(h6),

– third-order upwind formula:

Df(x) =
−f(x+ 2h) + 6 f(x+ h)− 3 f(x)− 2 f(x− h)

6h
(31)

= f ′(x)− h3

12
f (4)(x) +O(h4),

– third-order differentiation using a differentiation computed at
level Ωj−1:

Df(x) =
5 f(x+ h)− 4 f(x)− f(x− h)

4h
− 1

2
D2h f(x+ h) (32)

= f ′(x)− h3

24
f (4)(x) +O(h4),

or

= f ′(x) +
7

24
h3f (4)(x) +O(h4),

depending on how the differentiation D2h f(x+h) was computed.

• Interpolation

– third-order interpolation

I3,r f(x) =
3 f(x− h) + 6 f(x+ h)− f(x+ 3h)

8
= f(x)−h

3

2
f (3)(x)+O(h4),

(33)
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– fourth-order interpolation

I4 f(x) =
−f(x− 3h) + 9 f(x− h) + 9 f(x+ h)− f(x+ h)

16
(34)

= f(x) +
3

8
h4f (4)(x) +O(h6).

D Interpolets

Here we detail the interpolet construction.

For the thresholding, we resort to the second-order interpolation f(1
2) =

f(0)+f(1)
2 , the corresponding scale function filter is given by:

ϕ2(
x

2
) =

1

2
ϕ2(x+ 1) + ϕ2(x) +

1

2
ϕ2(x− 1) (35)

which is also the linear B-spline function, and for the fourth-order
interpolation:

f(
1

2
) =
−f(−1) + 9 f(0) + 9 f(1)− f(2)

16
, (36)

the scaling function is given by

ϕ4(
x

2
) = − 1

16
ϕ4(x+3)+

9

16
ϕ4(x+1)+ϕ4(x)+

9

16
ϕ4(x−1)− 1

16
ϕ4(x−3).

(37)
More generally

ϕ2n(
x

2
) =

∑
`

c`ϕ2n(x− l), (38)

with the symmetry c−` = c` ∀`, the conditions c0 = 1, c2` = 0 for
` > 0 and

1 1 . . . 1
1 32 . . . (2n− 1)2

...
...

...
...

1 32n−2 . . . (2n− 1)2n−2




c1

c3
...

c2n−1

 =


1
2
0
...
0

 (39)

the solution to this Vandermonde matrix system of equations is given
by:

c2`+1 =
1

2

n−1∏
j=0,j 6=`

(2j + 1)2

(2j + 1)2 − (2`+ 1)2
=

n

24n−3
Cn−1

2n−1

(−1)`

2`+ 1
Cn+`

2n−1.

(40)
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Then the wavelet is given by any function ψ such that

ψ2n(
x

2
) = ϕ2n(x− 1) +

∑
k

αkϕ2n(
x

2
− k), (41)

with the reals (αk)k well chosen with respect to the desired properties
of the wavelet: symmetry, zero-moments, small compact support. The
choice αk = 0 for all k provides a hierarchical basis.
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