
Compact AMR schemes for Conservation Laws

Compact AMR schemes for Conservation Laws

Erwan Deriaz

Équipe Plasmas Chauds

Institut Jean Lamour (Nancy), CNRS / Université de Lorraine

Projet ANR Vlasix

Avec: Nicolas Besse 1, Stéphane Colombi 2, Thierry Sousbie 2

CANUM 2016

Obernai – 9-13 mai 2016

1. Observatoire de Nice
2. Institut d’Astrophysique de Paris



Compact AMR schemes for Conservation Laws

Plan

1 Introduction-Motivations

2 Refinement filters and scaling functions

3 Mass conservation issues

4 Numerical experiments



Compact AMR schemes for Conservation Laws
Introduction-Motivations

Vlasov-Poisson equations

Distribution function f : R2d+1 → R+, (t, x, v) 7→ f (t, x, v)

∂t f + v · ∇xf + F (t, x) · ∇vf = 0 (1)

with
F (t, x) = ±∇xφ(t, x), (2)

∆xφ(t, x) =

∫
v∈Rd

f (t, x, v)d v −
∫

x,v∈Rd
f (t, x, v)d v dx. (3)
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Interaction of two Plummer models
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Collision of two Plummer : 3D-3V, 3D-view
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Cut in phase space

5126 uniform grid equivalent accuracy

(z,w) at max cut in (z,w) at zero grid in (z,w) at zero
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Collision of two Plummer : 3D-3V

for t ∈ [0, 21.7], number of time steps : 695
max number of points : 3,000,000,000 (on Curie supercomputer at IDRIS,
Extra Large Node with 512 GB main memory).
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Application to plasma physics : Bump-on-Tail in 1D-1V

Simulation box : (x , v) ∈ [− 10
3 π,

10
3 π]× [−10, 10]

Initial condition Bump-on-Tail :

f0(x , v) =

(
0.9√
2π

e−
v2
2 +

0.2√
2π

e−4(v−4.5)2
)
.



Compact AMR schemes for Conservation Laws
Introduction-Motivations

1D-1V

distribution function grid
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1D-1V

uniform grid

AMR grid
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Figure: Plots of the maximum absolute value of the field E for two instances of the
bump-on-tail instability : with an uniform grid and with an AMR grid.
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1D-1V
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Figure: Relative variations (∆f /f ) for the mass, the total energy and the maximum
value of the distribution function. These should remain constant. For visualization
purpose, the mass variation was multiplied by ten.
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1D-1V

Total Energy

Ec

Ep
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Figure: Variation of the kinetic (Ec) and potential (Ep) energies. The kinetic energy
was vertically shifted by −23.
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Refinement filter

each refinement scheme issues a scaling function

ϕ
(x
2

)
=
∑
k∈Z

akϕ(x − k)

with
∑

k∈Z ak = 2.

a0

a1
a2

a−2
a−1

a0
a1

a2

a−2 a−1

ϕ(x
2)

ϕ(x − 1)
ϕ(x − 2)

ϕ(x − 3)

ϕ(x
2 − 1)

ϕ(x)ϕ(x + 1)ϕ(x + 2)
ϕ(x − 4)
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Gradation and compacity

Key element of the refinement algorithms : an element can become active
only if its parents (the elements from which it is interpolated) are already
active. Hence the notion of gradation.
The more non zero ak the larger the gradation margin, the needed
memory and the complexity. Critical in many dimensions.

It is possible to apply finite difference schemes to elements of the same
level (identical elements).

Interest of the interpolet scaling functions : many zero coefficients, easy
to pass an element from a level to an other level since it corresponds to a
point value.
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Special filters

Finite volume elements

ϕ
(x
2

)
=
∑
k∈Z

bkϕ(x − k)

with ∀k 6= 0, b2k + b2k+1 = 0, and b0 = b1 = 1 if symmetry

Interpolet scaling functions

ϕ̇
(x
2

)
=
∑
k∈Z

ak ϕ̇(x − k)

with a0 = 1 and ∀k 6= 0, a2k = 0 (lots of gaps)

Any finite volume scaling function derives from an interpolet scaling function :

ϕ̇′(x) = ϕ(x)− ϕ(x − 1)

∀k ak =
bk + bk+1

2
Interpolets are much smoother than finite volume scaling functions.
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Finite volume scaling functions

Scaling function

Compact support
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Scaling functions ϕ corresponding to the finite volume schemes.
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Interpolets : finite difference scaling functions

Interpolet
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Scaling functions ϕ corresponding to the finite difference schemes.
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Comparison between these two types

finite volume
5th order

3rd order

4th order interpolet

Re−centered compact support
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Scaling functions ϕ recentered for comparison.
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Mass calculation in AMR

Two instances when the mass M =
∫

Ω
u(x) dx is affected by the AMR scheme :

when the grid changes : refined or coarsed.
when solving the conservation law

∂tu +∇ · f (u, x) = 0

in the non uniform grid : un → un+1.

In the case of the finite volumes, the volume of an element depends exclusively
from its level and from the fact of being a leaf of not.
In the other cases, it depends on which descendents are activated.
Applying a wavelet transform concentrates all the mass on the coarsest level. It
allows to modify the grid safely.
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Advection and fluxes

For the finite volumes, we have to compute the fluxes F = f (u, x) along the
the surface S in the conservation law ∂t +∇ · f (u, x) = 0.

f(u,x)

Fgdt Fddt

volume V

surface s

C C0 1

then
du =

Fg − Fd

V
s dt

Interest : as the Fg of C1 equals the Fd of C0, the mass is strictly conserved.
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Making the scheme conservative

Let (xi , `i )i be a set of elements (points,weights) containing the information
(ui ) subject to a conservative equation ∂tu − ∂xu = 0.
We approximate the term ∂xu by a finite difference formula at order pi :

(∂xu)i ∼ δui =
1
`i

∑
j

αijuj .

We can compute the flux going outside the element (xj , `j ) :

Fj =

(∑
i

αij

)
uj .

These fluxes should be zero.
If it is not the case we substract them introducing correcting terms in some of
the (αij ) stencils :

(∂xu)i0 ∼ δui0 =
1
`i0

∑
j

αi0juj −
∑

j

Fj

 =
1
`i0

∑
j

(
αi0j −

∑
i

αij

)
uj .
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Points with volumes

Using the refinement scheme for 4th order interpolet we derive the following
‘volumes’ for the points
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Tranport in 1D

a=1

L

u

x

u=sin(2x−1.5)
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∂tu + a∂xu = 0 for t ∈ [0,T ] with T = 4 L, on 21 points.
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Spectrum of the discrete operator : eighenvalues λ

Real part of lambda
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Au is our discrete approximation of ∂xu, λ ∈ C are the eighenvalues of A.
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No change in the error
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Total mass variation during time

Mass without correction (left) and with correction (right)
The mass conservation is ok now
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Conclusion–Perspectives

Conclusion :

application of finite volume principles in interpolant AMR,

application of wavelet constructions through the considerations on scaling
functions,

6D simulations demand a lot of memory, we pass from 100,000 to 300,000
the number of points necessary for a local refinement.

Perspectives :

finish to implement the 6D code with these improvements,

as soon as the numerical scheme is validated, implement a MPI
parallelisation,

test other schemes, lagrangian, Galekin discontinuous, cf Eric Madaule’s
PhD.
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