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Abstract

We present a numerical method based on divergence-free wavelets to solve the
incompressible Navier-Stokes equations. We introduce a new scheme which uses
anisotropic (or generalized) divergence-free wavelets, and which only needs Fast Wavelet
Transform algorithms. We prove its stability and show convincing numerical experi-
ments.
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Introduction

The numerical simulation of turbulent flows has many applications in various engineering
and environmental problems. Direct numerical simulation (DNS) of turbulence requires
the integration in time of the full nonlinear Navier-Stokes equations. However, at high
Reynolds number, turbulent flows create a wide range of scales, which induces a huge
degree of complexity. Hence, in order to compute accurately all the scales of a turbulent
flow, the discretizations in space and in time must be of very small size, leading to a huge
number of degrees of freedom, impossible to handle in DNS of industrial problems.

Direct numerical simulations of homogeneous turbulent flows have been performed ex-
tensively to increase the understanding of small-scale structures mechanisms. Among the
computational methods commonly used for these simulations, one can cite spectral meth-
ods, well-localized in frequency [5], or finite element methods, well-localized in physical
space [21]. In between these two approaches, wavelet bases offer alternative decomposi-
tions, more suitable to represent the intermittent spatial structures of the flows.

The wavelet decomposition was first introduced in fluid mechanics to analyze turbulent
flows [32, 17, 23]. The first wavelet based schemes for the computation of homogeneous
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turbulent flows looked promising [6, 20, 27, 22], especially concerning adaptivity issues.
These wavelet schemes are based on Galerkin, Petrov-Galerkin or collocation methods,
but also wavelet/vaguelette decompositions. Wavelets may also be used for turbulence
modeling [19]. Most of the cited works use wavelets as a decomposition basis of the
vorticity field, with periodic boundary conditions, which makes the generalization to non-
periodic boundary conditions very difficult.

Another serious difficulty in the numerical simulation of the Navier-Stokes equations
lies in the determination of the pressure field and in the fulfillment of the incompressibil-
ity condition. In the primitive variable (u, p)-formulation of the Navier-Stokes equations,
physical boundary conditions (on the velocity) can be easily incorporated, but from the
numerical point of view, the computation of the velocity and the pressure presents some
difficulties: in the setting of classical discretizations, like spectral methods (in the non
periodic case) [3], finite element methods [21], or wavelets [10, 4], the discretization spaces
for the velocity and for the pressure have to fulfill an inf-sup condition (also called LBB
condition), otherwise spurious modes appear in the computation of the pressure which
break the incompressibility condition. Moreover, numerical difficulties arise in the com-
putation of the pressure, since it asks to solve an ill-conditioned linear system (in the
variational formulation), or a Poisson equation.

Provided that divergence-free trial functions are available for the computation of the
velocity field, these difficulties will be totally avoided: first the incompressibility condition
is directly taken into account by the approximation space of the velocity. Moreover, the
pressure disappears after projecting the velocity equation onto the space of divergence-free
vector functions (leading to the Leray formulation of the Navier-Stokes equations), and it
will be computed through the Helmholtz decomposition of the nonlinear term.

Therefore in this article we propose to use divergence-free wavelets as a decomposition
basis of the velocity field, solution of the incompressible Navier-Stokes equations. Such
wavelets were originally defined by P.G. Lemarié [28], and firstly used to analyze 2D tur-
bulent flows [1, 26], as well as to compute the Stokes solution for the driven-cavity problem
[36, 38]. We will consider here the anisotropic divergence-free wavelets constructed in [14].
The key-point of such numerical scheme based on divergence-free trial bases lies on the
orthogonal projection of the nonlinear term onto the space of divergence-free functions,
which is explicit in the spectral case. Since divergence-free wavelets are not orthogonal
bases, we propose in [15] an iterative algorithm to provide the Helmholtz decomposition
of any flow in the wavelet domain. Then we are in a position to define a new numerical
scheme for solving incompressible Navier-Stokes equations: first we project the equations
onto the space of divergence-free vector fields, which eliminates the pressure. Secondly, we
introduce a semi-implicit time-scheme, and propose an algorithm which only requires fast
wavelet transforms for the computation of the velocity (contrary to finite element methods
which need linear systems solvers). Finally, the pressure is directly recovered through the
Helmholtz decomposition of the nonlinear term, without any further computation.

Hence, by construction, this scheme takes benefit from the localizations both in space
and frequency allowed by wavelets, and should be used in a completely adaptive context.
It should be also available in arbitrary dimension, and extends readily to non-periodic
boundary conditions.

From a numerical point of view, the scheme we propose will be proved to be stable
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under a Courant-Friedrich-Levy (CFL) condition, provided that a sufficiently smooth so-
lution exists. The stability of this wavelet scheme is mainly due to the divergence-free
condition which is automatically and exactly satisfied by the divergence-free wavelet de-
composition of the solution.

The paper will be organized as follows: Section 1 briefly recalls the definitions of
anisotropic divergence-free and curl-free wavelets. Section 2 presents the wavelet Helmholtz
decomposition, as well as a wavelet numerical scheme for solving the heat equation. Sec-
tion 3 introduces a new numerical scheme for the incompressible Navier-Stokes equations,
and studies its stability. Finally Section 4 shows numerical tests, on the example of the
merging of three vortices in dimension 2. The last part of this section will give an insight
on how to make the method adaptive, with the support of some experiments.

1 Divergence-free and curl-free wavelets

One-dimensional wavelet bases are orthogonal (or biorthogonal) bases of the space L2(R)
which have the form: ψj,k(x) = 2j/2ψ(2jx − k) (j, k ∈ Z), where the wavelet ψ is a zero
mean function [31, 24]. They are known to provide optimal approximations for a large class
of functions [9]. From the numerical point of view, wavelet coefficients of a given function
are computed by fast wavelet transforms (FWT). In this setting, compactly supported
divergence-free wavelet bases have been constructed by P.G. Lemarié-Rieusset in 1992
[28], and K. Urban has extended the principle of their construction to derive curl-free
wavelets [37].

In this section we will recall the definitions of anisotropic divergence-free and gradient
(i.e. curl-free) wavelets. These wavelets are constructed thanks to two 1-D wavelets ψ0

and ψ1 related by differentiation: ψ′1(x) = 4 ψ0(x) [28].
For sake of simplicity, we give below the expressions of the basis functions in dimension

2, but these constructions have been extended in arbitrary dimension d [14, 15, 11].

1.1 Divergence-free wavelets

The 2D anisotropic divergence-free wavelets are generated from the vector function (plot-
ted on figure 1, left):

Ψdiv(x1, x2) =

∣∣∣∣
ψ1(x1)ψ0(x2)
−ψ0(x1)ψ1(x2)

by anisotropic dilations, and translations. Hence, the 2D anisotropic divergence-free wa-
velets are given by:

Ψdiv
j,k (x1, x2) =

∣∣∣∣
2j2ψ1(2j1x1 − k1)ψ0(2j2x2 − k2)
−2j1ψ0(2j1x1 − k1)ψ1(2j2x2 − k2)

where j = (j1, j2) ∈ Z2 is the scale parameter, and k = (k1, k2) ∈ Z2 is the position
parameter. For j,k ∈ Z2, the family {Ψdiv

j,k} forms a basis of

Hdiv,0(R2) = {f ∈ (L2(R2))2 ; div f ∈ L2(R2), div f = 0}

We introduce

Ψn
j,k(x1, x2) =

∣∣∣∣
2j1ψ1(2j1x1 − k1)ψ0(2j2x2 − k2)
2j2ψ0(2j1x1 − k1)ψ1(2j2x2 − k2)

3



as complement functions since Ψn
j,k is orthogonal to Ψdiv

j,k (j,k being fixed). Thus we have:

(L2(R2))2 = Hdiv,0 ⊕Hn (1.1)

with Hdiv,0 = span{Ψdiv
j,k ; j,k ∈ Z2} and Hn = span{Ψn

j,k ; j,k ∈ Z2}.

1.2 Curl-free wavelets

Let Hcurl,0(R2) be the space of gradient functions in L2(R2). We construct gradient
wavelets by taking the gradient of a 2D wavelet basis. If we neglect the L2-normalization,
the anisotropic gradient wavelets will be defined by:

Ψcurl
j,k (x1, x2) =

1

4
∇
(
ψ1(2j1x1 − k1)ψ1(2j2x2 − k2)

)
=

∣∣∣∣∣∣

2j1ψ0(2j1x1 − k1)ψ1(2j2x2 − k2)

2j2ψ1(2j1x1 − k1)ψ0(2j2x2 − k2)

For j = (0, 0) the function is plotted on figure 1, right. For j = (j1, j2),k = (k1, k2) ∈ Z2,
the family {Ψcurl

j,k } forms a wavelet basis of Hcurl,0(R2). We complete this basis to a(
L2(R2)

)2
-basis with the following complement wavelets:

ΨN
j,k(x1, x2) =

∣∣∣∣∣∣

2j2ψ0(2j1x1 − k1)ψ1(2j2x2 − k2)

−2j1ψ1(2j1x1 − k1)ψ0(2j2x2 − k2)

We have the following space decomposition:

(L2(R2))2 = HN ⊕Hcurl,0

with HN = span{ΨN
j,k ; j,k ∈ Z2} and Hcurl,0 = span{Ψcurl

j,k ; j,k ∈ Z2}.
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Figure 1: Examples of divergence-free (on the left) and curl-free (on the right) vector
wavelets in dimension two.
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2 Wavelet numerical algorithms

2.1 Wavelet Helmholtz decomposition

2.1.1 Principle of the Helmholtz decomposition

The Helmholtz decomposition [21, 7] consists in splitting a vector function u ∈ (L2(Rd))d
into its divergence-free component udiv and a gradient vector. More precisely, there exist
a potential-function p and a stream-function ψ such that:

u = udiv +∇p and udiv = curl ψ (2.1)

Moreover, the functions curl ψ and ∇p are orthogonal in (L2(Rd))d. The stream-function
ψ – which we assume divergence-free for d = 3 – and the potential-function p are unique
up to an additive constant.
In R2, the stream-function is a scalar valued function, whereas in R3 it is a 3D vector
function. This decomposition may be viewed as the following orthogonal space splitting:

(L2(Rd))d = Hdiv,0(Rd)⊕⊥Hcurl,0(Rd) (2.2)

where
Hdiv,0(Rd) = {v ∈ (L2(Rd))d ; div v ∈ L2(Rd), div v = 0}

is the space of divergence-free vector functions, and

Hcurl,0(Rd) = {v ∈ (L2(Rd))d ; curl v ∈ (L2(Rd))d, curl v = 0}

is the space of curl-free vector functions (if d = 2 we have to replace curl v ∈ (L2(Rd))d
by curl v ∈ L2(R2) in the definition). Let P be the orthogonal projector onto the space
Hdiv,0(Rd), also called the Leray projector. From the Helmholtz decomposition (2.1) of u
we have: Pu = udiv.

For the whole space Rd, the proof of the above decomposition can be derived easily by
mean of the Fourier transform. In more general domains, we refer to [21, 7]. Notice also
that Hdiv,0(Rd) is the space of curl functions, whereas Hcurl,0(Rd) is the space of gradient
functions.
The objective now is to explicit the Helmholtz decomposition of any vector field, in wavelet
domain.

2.1.2 Iterative wavelet Helmholtz decomposition algorithm

Instead of the previous orthogonal sum (2.2), the divergence-free and gradient wavelet
decompositions provide the following (non orthogonal) direct sums of vector spaces:

(L2(Rd))d = Hdiv,0 ⊕Hn , (L2(Rd))d = HN ⊕Hcurl,0

where the spaces Hn = span{Ψn
j,k} and HN = span{ΨN

j,k} are generated by the com-
plementary wavelets, as introduced in section 1. These direct sums may be rewritten by
introducing the associated non-orthogonal projectors (see [14] for practical computations):

v = Pdiv v + Qn v , v = PN v + Qcurl v
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Then, applying alternatively the divergence-free and the curl-free wavelet decompositions,

we define a sequence (vp)p∈N ∈
(
L2(Rd)

)d
:

v0 = v

vp = (Qcurl + PN) (Pdiv + Qn) vp = Pdiv vp︸ ︷︷ ︸
vpdiv

+ Qcurl Qn vp︸ ︷︷ ︸
vpcurl

+ PN Qn vp︸ ︷︷ ︸
vp+1

Finally, if this sequence converges to 0 in L2, we obtain:

vdiv =
+∞∑

p=0

vpdiv vcurl =
+∞∑

p=0

vpcurl

H

H

H

HN

v (=v  )

div
n

div 0

div
1

curl curl

2

0

0

0

(=v  )

v

v

v

v

v

0

curl 0

1

v1

v0
N

n

Figure 2: Construction of the sequences vpdiv and vpcurl, and schematization of the conver-
gence process of the algorithm with Hn = span{Ψn

j,k} and HN = span{ΨN
j,k}.

This algorithm has been proved to converge in 2D using any kind of wavelets, and in
arbitrary dimension using Shannon wavelets [15]. In the case of Shannon wavelets, we also
have the following convergence theorem:

Theorem 2.1 Let v ∈
(
L2(Rd)

)d
, and let the sequence (vp)p≥0 be defined by:

v0 = v and vp+1 = PNQn vp, p ≥ 0 (2.3)

where Qn and PN are the complementary projectors associated respectively to divergence-
free wavelets and curl-free wavelets. If the wavelet ψ1 used in section 1 for the construction
of divergence-free and curl-free wavelets is the Shannon wavelet 1, the sequence (vp) sat-
isfies, in L2 norm:

‖vp‖ ≤
(

9

16

)p
‖v‖

Experimentally, we also observe the convergence for many kinds of 2D and 3D wavelets
[14]. This algorithm will be used in section 3, in the numerical scheme for incompressible
Navier-Stokes equations.

1ψ1(x) = sin 2π(x−1/2)
π(x−1/2)

− sinπ(x−1/2)
π(x−1/2)

, cψ1(ξ) = e−iξ/2 χ[−2π,−π]∪[π,2π](ξ)
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2.2 Wavelet solution of the discrete heat equation

As we would like the numerical scheme to be sufficiently stable in time, we will adopt an
implicit scheme for the diffusive part of the Navier-Stokes equation. Therefore we will
focus on the scalar equation:

(Id− α∆)u = f, α = νδt, f : Rd → R (2.4)

which arises in the resolution of the heat equation, after introducing an implicit time-
scheme. We will present now an algorithm for solving such problem, based on wavelet
preconditionners of elliptic operators, and related to the works of J. Liandrat and A. Cohen
[30, 9]. In the vector case, the algorithm should be applied on each component of the vector
field.

Let (ψj,k)j,k∈Zd be a multivariate wavelet basis in Rd, constructed by tensor-products
of d one-dimensional wavelets. Then the scalar function f can be expanded into the basis
(ψj,k):

f =
∑

j,k∈Zd
dj,k ψj,k (2.5)

We regroup the wavelets of a same level j in fj =
∑

k∈Zd dj,k ψj,k, then

f =
∑

j∈Zd
fj

For j = (j1, · · · , jd), fj is localized in Fourier domain around the wavenumber ρ(2j1 , 2j2 , · · · , 2jd)
with ρ approximating the average spectrum location of the wavelet ψ (for instance, opti-

mally ρ =
√

5π√
2

for the Shannon wavelet [12]). Then we introduce:

ω2
j = ρ2

d∑

i=1

22ji

In order to solve (Id− α∆)u = f , we start with:

u0 =
∑

j∈Zd
uj,0, where uj,0 =

1

1 + αω2
j

fj (2.6)

which is a first approximation of the solution.
Then, for k ≥ 0, let

uk+1 = uk +
∑

j∈Zd

1

1 + αω2
j

(fj − (Id− α∆)uk j) (2.7)

This algorithm has been presented in detail in [12], where it has been proved that the
sequence (uk) converges to the exact solution u of equation (2.4). The convergence rates
depends on α: the smaller α is, the faster the algorithm converges. More precisely, we
have the following convergence theorem:
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Theorem 2.2 Let f be in L2(Rd), and let the sequence (uk)k≥0 be defined by (2.6) and
(2.7). Using Shannon wavelets in the decomposition (2.5), the sequence (uk) satisfies, in
L2-norm:

‖uk − u‖ ≤
(

3α

2δx2 + 5α

)k
‖u0 − u‖

where u is the solution of equation (2.4) and δx the mesh size of the smallest computed
scale.
In particular, this implies that:

‖uk − u‖ ≤
(

3

5

)k
‖u0 − u‖

which proves the convergence.
But if νδt

δx2 � 1 (recall that α = νδt), then it could be more interesting to consider:

‖uk − u‖ ≤
(

3νδt

2δx2

)k
‖u0 − u‖

In practice, since we are working with spline wavelets, the Laplacian ∆uk j in (2.7) is
analytically computed, and then re-projected onto the wavelet basis by a spline approx-
imation. In the following, we will apply the above method in a divergence-free wavelet
basis: in this case, f and u are vector functions, expanded into the divergence-free ba-
sis (ψj,k = Ψdiv

j,k in (2.5)). Since the divergence-free condition is preserved under the
application of (Id − α∆), we solve the discrete Heat Equation (Id − α∆)u = f with
div u = div f = 0 by projecting the equation (2.7) onto a finite dimensional divergence-
free multiresolution analysis:

uk+1 = uk +
∑

|j|<J

1

1 + αω2
j

(fj − [Pdiv,J(Id− α∆)uk]j) (2.8)

where Pdiv,J, introduced in Section 2.1.2 is the oblique projector onto the space spanned by
divergence-free wavelets of scale index j such that |j| < J . Since the term (Id− α∆)uk is
already divergence-free, the action of Pdiv,J reduces to a truncation in scale of the wavelet
decomposition. Hence the resulting error is the usual approximation error in a multireso-
lution analysis.

3 A numerical scheme for Navier-Stokes equations

We present below a divergence-free wavelet numerical method, for the solution of the
incompressible Navier-Stokes equations, written in velocity-pressure formulation (without
forcing term) in the whole space:

{
∂u
∂t + (u · ∇)u +∇p− ν∆u = 0, t ∈ [0, T ], x ∈ Rd
∇ · u = 0

(3.1)

with initial data u0.

Computation of the velocity: First the velocity u is searched in Hdiv,0(Rd) as a linear
combination of divergence-free wavelets. If we denote by P the orthogonal Leray projector
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onto Hdiv,0(Rd) (introduced in Section 2.1.1, and here expressed in the wavelet domain),
equation (3.1) becomes, after projection onto the divergence-free vector functions:

∂u

∂t
+ P [(u · ∇)u]− ν∆u = 0 (3.2)

The pressure is eliminated, but it will be simply recovered through the wavelet Helmholtz
decomposition of the nonlinear term.

Computation of the pressure: The wavelet Helmholtz decomposition of the nonlinear
term (u · ∇)u reads:

(u · ∇)u = P [(u · ∇)u] + [(u · ∇)u]curl = P [(u · ∇)u]−∇p
The divergence-free term P [(u · ∇)u] is used for the computation of the velocity in (3.2),
whereas the curl-free term is used for the computation of the pressure as follows: remem-
bering the definition of gradient (curl-free) wavelets given in section 1.2 (2D case), −∇p
in the above decomposition reads:

−∇p(t,x) =
∑

j,k

dcurl j,k(t)
1

4
∇
(
ψ1(2j1x1 − k1) · · ·ψ1(2jdxd − kd)

)

which simply gives:

p(t,x) = −1

4

∑

j,k

dcurl j,k(t) ψ1(2j1x1 − k1) · · ·ψ1(2jdxd − kd)

where dcurl j,k are the (curl-free) wavelet coefficients of the curl-free part of the nonlinear
term. Remark that the computation of the pressure in physical space only requires an
inverse Fast Wavelet Transform.

We will focus now on equation (3.2). We will introduce a finite-difference time scheme,
for which we will prove the stability, provided that a Courant-Friedrich-Levy condition is
satisfied.

3.1 Time-discretizations and stability conditions

Let δt be a time step. At each time tn = nδt, the exact solution u(tn,x) is approximated
by un such that:

un(x) =
∑

j,max |ji|<J

∑

k∈Z2

unj,k Ψdiv
j,k (x) (3.3)

Here the divergence-free wavelet expansion is truncated in scale, which corresponds to a
finest mesh size δx = 2−J . In practice, the sum in (3.3) is finite.
For stability reasons the diffusive term of the Navier-Stokes equation will be implicitly
treated, whereas for simplicity the nonlinear term will be explicitly treated. We begin
with the study of the Euler scheme.

3.1.1 Semi-implicit Euler scheme

The semi-implicit Euler scheme applied to equation (3.2) is given by:

(Id− νδt∆) un+1 = un − δt P [(un · ∇)un] (3.4)
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where un is expanded into a divergence-free wavelet basis, up to a scale J−1 (3.3). In the
above expression, the gradient operator is exactly computed, whereas the other operators
are approximated. Actually, the operators ∆ and P should be noted ∆J and PJ as they
stand for the operators into the discretized wavelet space: ∆J = Pdiv,J ∆ with Pdiv,J

introduced in Section 2.2, and if PJ is the L2-orthogonal projector onto the discretization
space, PJ = PJ P. Nevertheless we will keep the notation ∆ and P for readability reasons.
Then each time-step n is divided into two parts:

• First compute the divergence-free wavelet coefficients of P [(un · ∇)un]: this compu-
tation is achieved through the reconstruction of un in physical space from its wavelet
coefficients unj,k, then the nonlinear term is evaluated by a collocation technique in
physical space. Finally the Wavelet Helmholtz decomposition algorithm of Section
2.1.2 provides the expected coefficients.

• Secondly compute the divergence-free wavelet coefficients un+1
j,k of un+1 by using the

algorithm described in Section 2.2, for the discrete heat equation solution. As the
heat kernel is directly computed in the divergence-free wavelet basis, there is no need
of further projection onto the divergence-free function space as indicated in Section
2.2, equation (2.8) (and it is exact up to a truncation in scale).

Both computations involve an iterative method, but which only requires fast wavelet
transforms. We will see in numerical tests that in practice these numbers of iterations are
very low.

L2-stability of the semi-implicit Euler scheme

In this paragraph we proceed to study the stability of the semi-implicit Euler scheme.
We will provide a CFL stability condition: δt ≤ Cδx2. This study is inspired by the
approach of R. Temam in his book [35] to derive L2-stability of one-step schemes, including
the explicit Euler scheme, within the framework of finite elements. Here, we will limit
ourselves to simplified proofs which will be sufficient to recover the effective CFL conditions
encountered in the numerical experiments of Section 4.

For studying the stability, we assume that at time step n, we observe a small error εn.
Hence, instead of having exactly un – a discrete solution of (3.4), as close to u(nδt, ·) as
possible –, we have un + εn. Then, at step n+ 1, the error with respect to u((n+ 1)δt, ·),
is due, on one hand to the newly introduced error in the algorithm (which corresponds to
the consistency error), and on the other hand, to the increase of the error coming from
the previous steps (and which is concerned with stability).

On the other hand, let PJ be the L2-orthogonal projector onto the discretization space,
we introduce the following consistency error:

en+1 =
1

δt
[PJ(u((n+ 1)δt, . )− PJ(u(nδt, . )) − (un+1 − un)] (3.5)

=
1

δt

[
PJ (

∫ (n+1)δt

nδt
∂tu dt)

]
− (ν∆un+1 − P [(un · ∇)un])
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If at time tn = nδt the discrete solution un coincides with the projection of the exact
solution PJ(u(tn, . )) we obtain:

en+1 =
1

δt
[PJ(u(tn+1, . )− PJ(u(tn, . ))]

−ν∆(Id− νδt∆)−1(PJu(tn, . )− δtP [(PJu(tn, . ) · ∇)PJu(tn, . )])

+ P [(PJu(tn, . ) · ∇)PJu(tnt, . )] (3.6)

We will assume that the above consistency error is small and behaves at each time step
as:

‖en+1‖L2 = O(δt) +O(δx2)

which means that it is supposed to be of order one in time, and order two in space.

Assumptions: Let us assume that the solution u(t,x) of the Navier-Stokes equations
(3.1) is continuously differentiable in space and that u and its derivatives go to zero at
infinity (‖x‖ → +∞). And let us assume that un and its derivatives have the same bounds
as u(t,x) and its derivatives. Hence:

A0 = sup
t∈[0,T ], x∈Rd

|u(t,x)| < +∞ and ‖un‖L∞ ≤ A0 (3.7)

A1 = sup
t∈[0,T ], x∈Rd

|∇u(t,x)| < +∞ and ‖∇un‖L∞ ≤ A1 (3.8)

We will also assume that δt = o(δx).

A priori estimate: For the stability, the error εn lives in our finite dimensional
discretization space. We assume, and latter verify the following a priori estimate on εn
(cf inequality (3.16)):

‖εn‖L2 = O(δx2) (3.9)

Proof of stability: If we prove that there exists a constant C (which will depend on A0

and A1) such that ‖εn+1‖ ≤ (1 + Cδt)‖εn‖, then the scheme is stable, in the sense that
an initial error propagates in time within a fixed bounded domain. In our case, we will
recover the L2-stability thanks to the following well-known result ([21] Chapter IV lemma
2.1):

Lemma 3.1 Let u,v,w ∈ H1(Rd)d, H1 denoting the Sobolev space, be such that (u ·
∇)v, (u · ∇)w ∈ L2. If u ∈ Hdiv,0(Rd), then

< v, (u · ∇)w >L2= − < (u · ∇)v,w >L2

11



Proof:

< v, (u · ∇)w > =
∫
x∈Rd v · (u · ∇)w dx

=
∫
x∈Rd

∑d
i=1 vi(x)

∑d
k=1 uk(x)∂kwi(x) dx

=
∫
x∈Rd

∑d
k=1 uk(x)

(∑d
i=1 vi(x)∂kwi(x)

)
dx

=
∫
x∈Rd

∑d
k=1 uk(x)

(
∂k(
∑d

i=1 vi(x)wi(x))− (
∑d

i=1 wi(x)∂kvi(x))
)
dx

= −
∫
x∈Rd

(∑d
k=1 ∂kuk(x)

)(∑d
i=1 vi(x)wi(x)

)
dx− < w, (u · ∇)v >

= − < w, (u · ∇)v >

Here, we used first integration by parts and then the fact that div u =
∑d

k=1 ∂kuk = 0.

Remark 3.1 This result is still valid on an open set Ω with slipping conditions u · n = 0
on the boundary ∂Ω, with n the normal to ∂Ω.

Corollary 3.1 Let u,v ∈ H1(Rd)d, be such that (u · ∇)v ∈ L2. If u ∈ Hdiv,0(Rd), then
v ⊥ (u · ∇)v for the L2 scalar product, i.e.

< v, (u · ∇)v >L2=

∫

x∈Rd
v · (u · ∇)v dx = 0

Proof:
We apply the lemma 3.1 with w = v, and get < v, (u · ∇)v >= − < (u · ∇)v,v >.

Remark 3.2 This result also yields orthogonality between the vectors v and (v · ∇)v, for
v ∈ Hdiv,0(Rd).

Theorem 3.1 An error εt equal to ε = O(δx2) at time t = 0 propagates in the wavelet
numerical scheme (3.4) bounded by:

‖εt‖L2 ≤ e(λ
A2

0
2

δt
δx2 +A1)t‖ε‖L2

where A0 and A1 are the constants depending on u introduced in formulas (3.7) and (3.8),
δt the time step, δx the mesh of the smallest computed scale, and λ a constant close to 1.

Then the scheme (3.4) is stable under the CFL condition δt
δx2 ≤ C for a fixed constant

C > 0 which can be chosen equal to 2A1

A2
0

for instance.

Proof: If we want to estimate the propagation of the error εn, from the scheme (3.4) we
obtain:

(Id− νδt∆) (un+1 + εn+1) = un + εn − δtP [((un + εn) · ∇)(un + εn)] (3.10)

Then the sequence εn satisfies:

(Id− νδt∆) εn+1 = εn − δtP [(εn · ∇)un + (un · ∇)εn + (εn · ∇)εn] (3.11)

12



We apply the corollary 3.1 to εn ∈ Hdiv,0(Rd), and by orthogonality of εn to all gradient
functions we have:

εn ⊥ (un · ∇)εn =⇒ εn ⊥ P [(un · ∇)εn]

and
εn ⊥ (εn · ∇)εn =⇒ εn ⊥ P [(εn · ∇)εn]

Then, denoting ηn = P [(un · ∇)εn + (εn · ∇)εn], we get:

‖εn − ηnδt‖2L2 = ‖εn‖2L2 + ‖ηn‖2L2δt
2

and

‖εn − ηnδt‖L2 = ‖εn‖L2

(
1 +
‖ηn‖2L2δt

2

‖εn‖2L2

)1/2

= ‖εn‖L2 +
‖ηn‖2L2

2‖εn‖L2

δt2 + o()

where o() represents negligible terms in the Taylor series, since we have assumed previously
that ‖εn‖L2 = 0(δx2) and that δt = o(δx).

The discrete solution un = PJ(un) is a truncated wavelet expansion as indicated in
formula (3.3) and the stability error εn lives in the same discretization space. Then the
differentiation operator will only multiply εn by (δx)−1 at most. Hence, we have the
following bound:

‖ηn‖L2 = ‖P [(un · ∇)εn + (εn · ∇)εn] ‖L2 ≤ ‖(un·∇)εn+(εn·∇)εn‖L2 ≤ ‖un‖L∞ |εn|H1+‖εn‖L∞ |εn|H1

On the other hand, let εn =
∑

j,k dj,kΨj,k be the wavelet expansion of εn. Then each partial

derivative writes ∂iεn =
∑

j,k 2ji+2dj,kΨ∂i
j,k (where ∂iΨ = 4Ψ∂i). The norm equivalence

provided by the wavelet decomposition in Sobolev spaces leads to:

|εn|H1 ∼

√√√√
d∑

i=1

‖2ji+2dj,k‖2`2 ≤ 2J+1
√
d ‖dj,k‖`2 ∼

‖εn‖L2

δx
(3.12)

since δx = 2−J .
Let now εn =

∑
k cJ,kΦJ,k be the scaling decomposition of εn, the scaling functions ΦJ,k =

Φ(2Jx− k) being L∞-normalized ‖ΦJ,k‖L∞ = 1. Then

‖εn‖L2 ∼ ‖2−Jd2 cJ,k‖`2 ≥ 2−
Jd
2 ‖cJ,k‖`∞ = δx

d
2 ‖cJ,k‖`∞

Since
‖εn‖L∞ ∼ ‖cJ,k‖`∞‖ΦJ,k‖L∞ ∼ ‖cJ,k‖`∞

we obtain the result:

‖εn‖L∞ .
‖εn‖L2

δxd/2
(3.13)

This leads to:
‖ηn‖2L2

2‖εn‖L2

. A2
0‖εn‖L2

2δx2
+A0

‖εn‖2L2

δx2+d/2
+
‖εn‖3L2

2δx2+d

Moreover
‖δtP [(εn · ∇)un] ‖L∞ ≤ δt‖εn‖L2‖∇un‖L∞ ≤ δtA1‖εn‖L2
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Finally:

‖ (Id− νδt∆) εn+1‖L2 ≤
(

1 + λ
A2

0

2

δt2

δx2
+ λA0

‖εn‖L2δt2

δx2+d/2
+ λ
‖εn‖2L2

2δx2+d
δt2 +A1δt+ o(δt)

)
‖εn‖L2

for some λ constant (close to 1). Thanks to a priori assumptions (3.9), ‖εn‖L2 = o(δxd/2),
for d = 2, 3, since d

2 < 2; This leads to:

‖ (Id− νδt∆) εn+1‖L2 ≤
(

1 + (λ
A2

0

2

δt

δx2
+A1 + o(1))δt

)
‖εn‖L2

Any role played by the discrete heat kernel would be favorable for the L2-stability since
‖εn+1‖L2 ≤ ‖ (Id− νδt∆) εn+1‖L2 . For a first stability condition we use this inequality
(neglecting the role of (Id− νδt∆)), then we have the following CFL condition:

δt

δx2
≤ C (3.14)

for some C > 0 constant. Or, if we want something more precise, a good choice should be:

A2
0

2

δt

δx2
= A1 (3.15)

Remark 3.3 This stability condition should be compared with the usual CFL condition
δt ≤ Cδx which is much weaker and more interesting. In practice, we observe a stabil-
ity condition δt ≤ Cδx2 for the Euler scheme (3.4) which confirms the theoretical CFL
condition (3.14). For the order two central scheme with divergence-free wavelets (3.18),
we observe numerically a stability condition δt ≤ Cδx4/3. This experimental result will be
justified later.

The stability is then guaranteed since, for an initial error ε0 ∈ L2 with ‖ε0‖L2 = O(δx2)
at time 0 (this assumption on ‖ε0‖L2 comes from the consistency assumptions and from
δt = O(δx2)),

‖εT/δt‖L2 ≤
(

1 + (
A2

0

2

δt

δx2
+A1)δt

)T/δt
‖ε0‖L2 ≤ e(

A2
0

2
δt
δx2 +A1)T ‖ε0‖L2 (3.16)

Under the CFL condition, e(
A2

0
2

δt
δx2 +A1)T is bounded by a constant. Then

‖εT/δt‖L2 = O(δx2)

Hence we obtain the a priori estimate (3.9).

Remark 3.4 If we just had
εn+1 = εn + δtηn

with no orthogonality between εn and ηn, then the stability would not hold since

‖εn+1‖L2 ∼ ‖εn‖L2 + ‖ηn‖L2δt ∼ (1 +
A0

δx
δt)‖εn‖L2

and then
‖εT/δt‖L2 ∼ e(

A0
δx

)T ε0

which goes exponentially to infinity for δx→ 0.

14



Now, we will take the implicit Laplacian into account. Assume we apply first the implicit
Laplacian and then the convection term, then

un+1 = (Id− νδt∆)−1 un − δtP
[
((Id− νδt∆)−1 un · ∇) (Id− νδt∆)−1 un

]

and so

εn+1 = (Id− νδt∆)−1 εn − δtP
[
((Id− νδt∆)−1 εn · ∇) (Id− νδt∆)−1 un

+((Id− νδt∆)−1 un · ∇) (Id− νδt∆)−1 εn

]

We neglect the last term (εn · ∇)εn in comparison with equation (3.11) since it doesn’t
play any rôle. As (Id− νδt∆)−1 εn is divergence-free, we have the same orthogonalities
as in (3.11). We replace the bound for |εn|H1 by:

‖∇ (Id− νδt∆)−1 εn‖L2 ≤ sup
δx≤α<+∞

(
1 +

νδt

α2

)−1 ‖εn‖L2

α
≤ ‖εn‖L2

2
√
νδt

where α represents the different computed scales, and with 1
2
√
νδt

the maximal value of

α 7→ 1
α

(
1 + νδt

α2

)−1
. Hence we have

‖εn+1‖L2 ≤ (1 + (
A2

0

8ν
+A1)δt)‖εn‖L2 (3.17)

Hence we have unconditional stability. But one has to remark that this is interesting only

if
A2

0
8ν ≤ A1, that is for low Reynolds numbers.

Conclusion: The stability conditions of the semi-implicit Euler scheme are summarized:
If

A2
0 ≤ 8νA1

then the scheme is unconditionally stable, otherwise the scheme is conditionally stable
under the CFL condition:

δt ≤ Cδx2

with C > 0 a constant.

3.1.2 An order two time-scheme

In the numerical experiments of Section 4, we will use a second-order central difference
scheme for incompressible flows based on velocity variables. This scheme was presented
in [25] where the authors noticed its robustness with no further justifications. In the
following, we will prove that a CFL condition can be derived from the divergence-free
condition, like for the Euler semi-implicit scheme.

This order two central scheme proceeds with an intermediate step un+1/2 as follows:

(
Id− ν δt

2
∆

)
un+1/2 = un −

δt

2
P [(un · ∇)un]

(
Id− ν δt

2
∆

)
un+1 = un + δt

(ν
2

∆un − P
[
(un+1/2 · ∇)un+1/2

])
(3.18)
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Like for the Euler semi-implicit scheme, the operators ∆ and P should be noted ∆J and
PJ as they stand for the operators into the discretized wavelet space: ∆J = Pdiv,J ∆, and
PJ = PJ P. But we already keep the notation ∆ and P.

In this scheme, the nonlinear term (u · ∇)u and the heat equation are handled in two
different manners, both second order in time:

• the central point un+1/2 (computed by an Euler explicit method for the nonlinear
term and an Euler implicit method for the heat equation) is only used for the com-
putation of the nonlinear term contribution: un+1 = un − δtP

[
(un+1/2 · ∇)un+1/2

]

• the heat equation is solved by the order two scheme:
(
Id− ν δt2 ∆

)
un+1 =

(
Id+ ν δt2 ∆

)
un

This treatment of the nonlinear term improves the stability condition. The L2-stability is
guaranteed by the CFL like condition: δt ≤ Cδx4/3.

L2-stability of the order two central scheme

The problem of L2-stability of this scheme is addressed in the book by P. Wesseling
[40]. Nevertheless, the techniques used in this book rely on a linearization followed by
a Fourier transform. Here we will use a different technique which is slightly simpler: we
show that under some condition on the time step, a small perturbation is not amplified
by the numerical scheme.

In the following computations, we do not take into account the diffusion term .

Lemma 3.2 A small error εn, with ‖εn‖L2 = O(δx2), on un, in the wavelet numerical
scheme:

un+1/2 = un −
δt

2
P [(un · ∇)un]

un+1 = un − δtP
[
(un+1/2 · ∇)un+1/2

]
(3.19)

becomes at step n+ 1, εn+1 with:

‖εn+1‖L2 ≤
(

1 +
δt4

8δx4
A4

0 + δtA1 + o()δt

)
‖εn‖L2 (3.20)

with o() a function going to 0 under the condition δt ≤ Cδx.

Proof: Replacing un by un + εn in the equations (3.19):

un+1/2+εn+1/2 = un+εn−
δt

2
(P [(un · ∇)un] + P [(εn · ∇)un] + P [(un · ∇)εn] + P [(εn · ∇)εn])

Then:

un+1 + εn+1 = un + εn − δtP
[
((un+1/2 + εn+1/2) · ∇)(un+1/2 + εn+1/2)

]

Then we gather all the most important terms and we obtain:

εn+1 = εn − δtP [(un · ∇)εn] +
δt2

2
P [(un · ∇)P [(un · ∇)εn]]− δtP [(εn · ∇)un] + o()

Then, on one hand, thanks to corollary 3.1, we have
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• P [(un · ∇)εn] ⊥ εn
• (un·∇)P [(un · ∇)εn] ⊥ P [(un · ∇)εn] =⇒ P [(un · ∇)P [(un · ∇)εn]] ⊥ P [(un · ∇)εn]

and on the other hand, thanks to lemma 3.1, as div εn = 0

< εn,P [(un · ∇)P [(un · ∇)εn]] > = < εn, (un · ∇)P [(un · ∇)εn] >

= − < (un · ∇)εn,P [(un · ∇)εn] >

= − < P [(un · ∇)εn] ,P [(un · ∇)εn] >

= −‖P [(un · ∇)εn] ‖2L2 (3.21)

Then, the computation of ‖εn+1‖2L2 , taking apart δtP [(εn · ∇)un], yields:

‖εn+1 + δtP [(εn · ∇)un] ‖2L2 = ‖εn‖2L2 + δt2‖P [(un · ∇)εn] ‖2L2 + δt2 < εn,P [(un · ∇)P [(un · ∇)εn]] >

+
δt4

4
‖P [(un · ∇)P [(un · ∇)εn]] ‖2L2 + o()

= ‖εn‖2L2 +
δt4

4
‖P [(un · ∇)P [(un · ∇)εn]] ‖2L2 + o()

≤ ‖εn‖2L2 +
δt4

4
‖un‖4L∞

‖εn‖2L2

δx4
+ o()

Taking the square root of this expression and isolating εn+1, we obtain

‖εn+1‖L2 ≤ δt‖P [(εn · ∇)un] ‖L2 +

(
1 +

δt4

8δx4
A4

0 + o()

)
‖εn‖L2

which allows to conclude.

Theorem 3.2 The central numerical scheme (3.18) is stable under the CFL like condi-
tion:

δt ≤ Cδx4/3 (3.22)

with C a constant.

Proof: As a stability condition for the scheme (3.18) is

‖εn+1‖ ≤ (1 + Cδt) ‖εn‖L2

with C a constant. According to lemma 3.2 equation (3.20), this means that

1 +
δt4

8δx4
A4

0 + δtA1 + o()δt ≤ 1 + Cδt

for some constant C. Which is equivalent to the existence of a constant C ′ such that:

δt ≤ C ′δx4/3

Remark 3.5 In a similar fashion, explicit numerical schemes of order 2p in time show a
CFL like stability condition: δt ≤ Cδx(2p+2)/(2p+1), at worst, for the incompressible Euler
equation [13].
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3.2 Wavelet adaptivity in space

At each step n of the time discretization (semi-implicit Euler scheme (3.4) or order two
scheme (3.18)) the solution un and the nonlinear term P [(un · ∇)un] are expressed in terms
of divergence-free wavelet coefficients. Moreover, each time step only requires fast wavelet
transforms to compute the divergence-free wavelet coefficients of the solution un+1.

Therefore we will sketch in this section an adaptive method for the computation of the
solution u. The adaptivity will be based on the wavelet expansion of un (3.3) applied to
the numerical scheme (3.18).

At each time step n, we first find a set Λn of active wavelet coefficients. The other
coefficients are ignored and cancelled. Suppose that the set Λn has N elements (#(Λn) =
N), the computed solution un is then replaced by uNn :

uNn (x) =
∑

λ∈Λn

unλ Ψdiv
λ (x)

To define the set Λn, we consider the two wavelet decompositions of the velocity:

un(x) =
∑

λ

unλ Ψdiv
λ (x)

and of the nonlinear term:

P [(un · ∇)un] =
∑

λ

dnλ Ψdiv
λ

where the wavelets Ψdiv
λ are supposed to be L2-normalized. Let σ0n > 0 and σ1n > 0 be

two threshold parameters. Then the index λ is activated if |unλ| ≥ σ0n or |dnλ| ≥ σ1n in
the previous expansions, which leads to:

Λn = {λ ∈ Λ ; |unλ| ≥ σ0n or |dnλ| ≥ σ1n}

where the set Λ of indexes depends on the type of decomposition we use. For anisotropic
wavelets, λ = (i, j,k) ∈ [1, . . . , d− 1]× (Zd)2, while for isotropic wavelets, λ = (i, ε, j,k) ∈
[1, . . . , d− 1]× {0, 1}d∗ × Z× Zd [16].
The first threshold σ0n corresponds to the nonlinear approximation of un provided by
the N -best terms approximation of the wavelet transform [9]: it allows to stock valuable
information on un. The second threshold σ1n takes into account the future changes in the
wavelet decomposition of the velocity.

This thresholding procedure will be applied at each time-step of the divergence-free
wavelet scheme, and corresponding numerical tests will be presented in section 4.2.

Unfortunately, we will see in numerical experiments that anisotropic wavelets are not
well suited for adaptivity, because of their supports which can be highly elongated, mixing
large scales in one direction with small scales in the other one. We will remedy this prob-
lem of anisotropy induced by thresholding, by using ‘generalized’ divergence-free wavelets,
which are a mix between isotropic divergence-free wavelets and anisotropic divergence-free
wavelets. These wavelets were first introduced in [11] and extensively detailed in [16].

We explain below their construction in dimension two.
Let m ∈ N. The ‘generalized’ divergence-free wavelets are composed of the following vector
wavelets:
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• Ψ
div (1,1)
j,k =

∣∣∣∣
2j2ψ1(2j1x1 − k1)ψ0(2j2x2 − k2)
−2j1ψ0(2j1x1 − k1)ψ1(2j2x2 − k2)

with |j1 − j2| ≤ m,

• Ψ
div (1,0)
j,k =

∣∣∣∣
−2j2−2ψ1(2j1x1 − k1)(ϕ0(2j2x2 − k2)− ϕ0(2j2x2 − k2 − 1))
2j1ψ0(2j1x1 − k1)ϕ1(2j2x2 − k2)

with j2 = j1 −m,

• Ψ
div (0,1)
j,k =

∣∣∣∣
2j2ϕ1(2j1x1 − k1)ψ0(2j2x2 − k2)
−2j1−2(ϕ0(2j1x1 − k1)− ϕ0(2j1x1 − k1 − 1))ψ1(2j2x2 − k2)

with j1 = j2 −m.

where ψ′1 = 4ψ0 and ϕ′1 = ϕ0( . )− ϕ0( . − 1).
The corresponding complement functions used for the divergence-free wavelet trans-

form are:

• Ψ
n (1,1)
j,k =

∣∣∣∣
2j1ψ1(2j1x1 − k1)ψ0(2j2x2 − k2)
2j2ψ0(2j1x1 − k1)ψ1(2j2x2 − k2)

with |j1 − j2| ≤ m,

• Ψ
n (1,0)
j,k =

∣∣∣∣
ψ1(2j1x1 − k1)ϕ0(2j2x2 − k2)
0

with j2 = j1 −m,

• Ψ
n (0,1)
j,k =

∣∣∣∣
0
ϕ0(2j1x1 − k1)ψ1(2j2x2 − k2)

with j1 = j2 −m.

For m = 0, these wavelets are the usual isotropic divergence-free wavelets introduced
by P.-G. Lemarié [28].

Contrary to anisotropic wavelets, the supports of these wavelets do not lengthen and
allow to refine the grid locally. Notice also that with these ‘generalized’ divergence-free
wavelets, the algorithms of Sections 2.1.2 and 2.2 converge as well, with satisfactory con-
vergence rates (except for the isotropic wavelets m = 0). The particular case m = 1
gives quasi-isotropic functions, with a good behavior for the convergence of the wavelet
Helmholtz decomposition.

4 Numerical experiments

The experiment on which we apply our method is the three vortex interaction. This
experiment was originally designed by M. Farge and N. Kevlahan and is often used to test
new numerical methods [34, 6, 22]. In order to provide a reference solution, the experiment
of [6] was first reproduced by using a pseudo-spectral method, solving the Navier-Stokes
equations in velocity-pressure formulation.

The initial state is displayed on Figure 3 left. In the periodic box [0, 1]2, three vortices
with a Gaussian vorticity profile ωi(x) = Aiπe

−4π4((x1−αi)2+(x2−βi)2) are present:
- one centered at (α1, β1) = (3/8, 1/2) with amplitude A1 = 1,
- one centered at (α2, β2) = (5/8, 1/2) also with amplitude A2 = 1,
- and one centered at (α3, β3) = (5/8, 1/2 +

√
2/8) with amplitude A3 = −1/2.

The negative vortex is here to force the merging of the two positive ones. The time
step is δt = 10−2 and the viscosity ν = 5.10−5. The solution is computed on a 512 × 512
grid.

The vorticity fields at times t = 0, 10, 20 and 40 are displayed on Figure 3. The
second row of Figure 3 displays the absolute values of the isotropic divergence-free wavelet
coefficients of the velocity field at corresponding times, with a L∞-normalization. This
time-evolution of the wavelet modes can be compared to the time evolution of the wavelet
coefficients of the vorticity field presented in [34], with isotropic orthogonal scalar wavelets:
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divergence-free wavelet coefficients are concentrated on zones with high energy (around
structures and in strain zones), whereas wavelet coefficients of the vorticity fields are
concentrated on zones with high enstrophy (inside vortices and in strain zones). In both
cases, the wavelet maps give a good illustration of the sparsity provided by the wavelet
decomposition of flows containing coherent structures.

t=0 t=10 t=20 t=40

-1.6 -0.8 0 0.8 1.6 2.4

0 10−5 10−4 10−3 10−2

Figure 3: Vorticity fields at times t = 0, 10, 20 and 40, and corresponding isotropic
divergence-free wavelet coefficients of the velocity fields, for the reference solution, given
by a pseudo-spectral method on a 5122 grid.

4.1 Full divergence-free wavelet code

We show in this part the results of the “three vortex interaction” provided by the anisotropic
divergence-free wavelet method described in Section 3.1.2. To construct divergence-free
wavelets, we have used the spline wavelets ψ0 of order 2 and ψ1 of order 3, represented on
Figure 4.

The velocity field was computed on a 2562 grid with δt = 0.02 and ν = 5.10−5. For
this simulation, we don’t use any threshold on the wavelet coefficients. At each time step,
we compute the wavelet Helmholtz decomposition of (un · ∇)un with 7 iterations of the
algorithm of Section 2.1.2, taking the result of the previous step as initial guess. The
nonlinear term is evaluated by collocation in physical space. We also solve the discrete
heat equation with 3 iterations of the method described in Section 2.2. These (fixed in
time) number of iterations have been chosen to provide a sufficient accuracy.
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Figure 4: Scaling spline functions and associated spline wavelets of order 2 and 3 related
by differentiation: ψ′1 = 4ψ0.

The time-evolution of the vorticity field (reconstructed from the computed velocity
field) is very similar to Figure 3. Hence, the results are close to the reference solution.
Notice that this code only uses wavelet transforms.

We also observe the time-evolution of active divergence-free wavelet modes. Figure 5
represents the evolution in time of the ratio of wavelet coefficients (in L2-normalization)
above some fixed threshold. Let ε = sup(|u0

λ|) (= 0.066062) the maximal value of the
divergence-free wavelet coefficients of the initial velocity field. We introduce 7 values for
the threshold parameter: εi = ε/4i, (1 ≤ i ≤ 7), and we plot the ration of wavelet
coefficients of un verifying |unλ| > εi. The lowest threshold represented is ε/16, 384.
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0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 5: Time-evolution of the ratio – there are 2562 of them in total – of
anisotropic divergence-free wavelet coefficients of the solution un above thresholds
equal to εi = ε/4i for 1 ≤ i ≤ 7 (each curve corresponds to a different threshold
εi ∈ {16.5E − 3, 4.13E − 3, 1.03E − 3, 258E − 6, 64.5E − 6, 16.1E − 6, 4.03E − 6}).

One can observe that for this experiment, the complexity of the flow structure increases
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until reaching a maximum at time t = 22, and then decreases slowly.

4.2 Towards an adaptive divergence-free wavelet code, using anisotropic wa-
velets

We investigate in this section how the numerical wavelet scheme behaves with thresholding
the wavelet coefficients. As the implementation of a fully adaptive wavelet scheme is heavy,
we just compute the evolution of the solution by filtering, at each time step, the wavelet
coefficients of the velocity and of the nonlinear term. In practice, at each time-step of the
full anisotropic divergence-free wavelet code, we eliminate the wavelet coefficients below
the threshold σ0 (for the velocity coefficients) and σ1 for the divergence-free part of the
nonlinear term, as explained in Section 3.2. The thresholds σ0 and σ1 are chosen according
to empirical criteria.

Figure 6 displays the time-evolution of the wavelet coefficients above the thresholds
for the velocity, for the nonlinear term, the intersection of these two sets and their union,
this last one representing the number of active modes.
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Figure 6: Time-evolution of the ratio of wavelet coefficients above the thresholds: starting
from the bottom, the second lowest curve represents coefficients of the nonlinear term
above σ1 = 32E − 6, the third curve these of the velocity un above σ0 = 6E − 6, the first
curve the intersection of these two sets, and the upper curve is the union of these two sets.

The solution obtained presents no perceptible differences when compared with Fig-
ures 3.

Figure 7 displays the L2 relative error between this numerical solution and the reference
solution of Figure 3. This error is compared with the error obtained for a pseudo-spectral
code with the same number of grid points (2562). One can notice that neither the use of
wavelets, neither the thresholding destroy the accuracy of the solution.
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Figure 7: L2 relative errors for the pseudo-spectral code (lower curve) and the filtered
wavelet code (upper curve), corresponding to Figure 6, on a 2562 grid, compared with the
reference pseudo-spectral solution.

For higher thresholdings, the effects of the anisotropy begin to be visible. These effects
are already clearly present in Figure 8 where both thresholds σ0 and σ1 were multiplied
by 3, but without destroying the solution. And the evolution of the thresholding gives
satisfactory results: the maximum ratio of active coefficients goes to 6% instead of 10%,
and the evolution of the curve follows the complexity of the flow.

On the contrary, we see on Figure 9 that if we take a higher threshold with a maximum
of 4.5% of the coefficients, it leads to a non admissible final result.

t=0 t=10 t=20 t=40

Figure 8: Time-evolution of the vorticity, reconstructed from the velocity provided by the
filtered wavelet code (2562 grid, anisotropic divergence-free wavelets).

4.3 Filtered divergence-free wavelet code, using ‘generalized’ wavelets

We have remedied the problem of anisotropy induced by thresholding, by using ‘general-
ized’ divergence-free wavelets which are a mix between isotropic divergence-free wavelets
and anisotropic divergence-free wavelets. These wavelets have been defined in section 3.2.
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t=40
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Figure 9: Ratio of active coefficients for a high thresholding (on the left), the lowest curve
represents coefficients of the nonlinear term above σ1 = 160E − 6, the middle curve these
of the velocity un above σ0 = 30E−6, and the upper curve is the union of these two ; final
result at t = 40 (on the right), on a 2562 grid, using anisotropic divergence-free wavelets.

We choose to use quasi-isotropic wavelets, corresponding to the parameter m = 1, which
are a good compromise between isotropy, and convergence of the Helmholtz algorithm of
Section 2.1.2.

We have tested these wavelets with the experiment of the “three vortex interaction”.
We display the results on Figures 10 and 11.

Even with a rather high threshold (a maximum of only 5% of the wavelet coefficients
is needed), the quality of the solution remains reasonably good. And the thresholding
evolves in a satisfying way. We don’t observe the appearance of lines on the whole domain
as it was the case for anisotropic wavelets on Figure 9. Even when we compare these
results with those on Figure 8, we notice an improvement.

Conclusion

We derived in this paper a new numerical divergence-free wavelet scheme for solving
Navier-Stokes equations. The proposed method only relies on fast wavelet transforms and
is perfectly fitted for adaptivity. Nevertheless, work should be done to optimize this in
practice, and take more advantage of wavelets.

Until now, the use of divergence-free wavelets was limited to linear problems such as
the Stokes problem [36] or the equations of electromagnetism [38]. This limitation was due
to the non-existence of divergence-free wavelet algorithms dealing with nonlinear terms,
like (u · ∇)u for the Navier-Stokes equations. The investigation of anisotropic divergence-
free wavelets and more specifically the invention of ‘generalized’ divergence-free wavelets
[11] enables such algorithm (see Section 2.1.2 or [16]).

The numerical stability of this numerical scheme is fulfilled under a CFL condition,
and is mainly due to the use of divergence-free wavelets that permit to verify exactly the
divergence-free condition (div u = 0).
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Figure 10: Ratio of activated wavelet coefficients in the case of ‘generalized’ divergence-free
wavelets on a 2562 grid with thresholds σ1 = 20E − 6 and σ0 = 5E − 6.

t=0 t=10 t=20 t=40

Figure 11: Time-evolution of the vorticity, reconstructed from the velocity coefficients on
‘generalized’ divergence-free wavelets, with thresholding corresponding to Figure 10, on a
2562 grid.

Extensive numerical tests on the experiment of “three vortex interaction” were pre-
sented. The results provided by the new divergence-free wavelet method can be compared
with those obtained in [22]. In [22], M. Griebel & F. Kostner use anisotropic interpolat-
ing wavelets and a Poisson solver for the same experiment (three vortex interaction), the
equations being written in velocity-vorticity formulation. With 10,000 degrees of freedom,
their results are of lesser quality (ibid. “overestimation of the rotation of the cores of the
vortices”) than the ones we obtain with 3,500 degrees of freedom. The computational
time for the full wavelet code is about four times the Fourier code in the periodic case for
which the Fourier spectral method is known to be nearly optimal. But the interest of such
wavelet method is that it can be extended to other boundary conditions, such as Dirichlet
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or Neumann boundary conditions, using wavelets on the interval satisfying homogeneous
boundary conditions (see for instance [33]). To deal with complex geometries, wavelet
methods can be incorporated into a fictitious domain approach, and in this context, adap-
tive codes are also available [2]. Last, while only results in dimension two are presented
in this paper, our divergence-free wavelet method extends directly to dimension three.
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Appendix A: The ‘generalized’ wavelet transform in 2D

The ‘generalized’ wavelets make a compromise between isotropic wavelets and anisotropic
wavelets as indicated in Section 3.2. In the periodic case (T2), for m ≥ 0, the ‘generalized’
wavelet transform in the MRA (ψ1 ⊗ ψ2) is given by the following operations:

f(x1, x2) =
2J−1∑

k1,k2=0

cJ kϕ1(2Jx1 − k1)ϕ2(2Jx2 − k2)

The first step consists in performing an isotropic transform:

f(x1, x2) =

J−1∑

j=0

2j−1∑

k1,k2=0

d
(11)
j k ψ1(2jx1 − k1)ψ2(2jx2 − k2) + d

(10)
j k ψ1(2jx1 − k1)ϕ2(2jx2 − k2)

+d
(01)
j k ϕ1(2jx1 − k1)ψ2(2jx2 − k2) (4.1)

Some additional wavelet transforms for d
(10)
j k in the x2 direction and for d

(01)
j k in the x1

direction yields the ‘generalized’ wavelet transform:

f(x1, x2) =
∑J−1

j=0

(∑2j−1
k1,k2=0 d

(11)
(j,j) kψ1(2jx1 − k1)ψ2(2jx2 − k2)

+
∑m

`2=1

∑2j−1
k1=0

∑2j−`2−1
k2=0 d

(11)
(j,j−`2) kψ1(2jx1 − k1)ψ2(2j−`2x2 − k2)

+
∑m

`1=1

∑2j−`1−1
k1=0

∑2j−1
k2=0 d

(11)
(j−`1,j) kψ1(2j−`1x1 − k1)ψ2(2jx2 − k2)

+
∑2j−1

k1=0

∑2j−m−1
k2=0 d

(10)
(j,j−m) kψ1(2jx1 − k1)ϕ2(2j−mx2 − k2)

+
∑2j−m−1

k1=0

∑2j−1
k2=0 d

(01)
(j−m,j) kϕ1(2j−mx1 − k1)ψ2(2jx2 − k2)

)

If m = +∞, we have the anisotropic transform:

f(x1, x2) =
J−1∑

j1,j2=0

k1=2j1−1,k2=2j2−1∑

k1,k2=0

dj,kψ1(2j1x1 − k1)ψ2(2j2x2 − k2)

In all the previous equations we noted ψi 0 0 = ϕi 0 0 = 1 on T2.
These transforms are schematized in Figure 12.

Appendix B: Divergence-free wavelet transform in the ‘generalized’ case
in 2D

In the following the wavelets ψ1 and ψ0 are linked by derivation: ψ′1 = 4ψ0.
First, we apply the ‘generalized’ wavelet transform as defined in Appendix A to a vector
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Figure 12: Coefficient repartition for the isotropic, anisotropic and ‘generalized’ 2D wavelet
transforms.

function u on T2:

u =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 =
∑

0≤j1,j2≤J−1, |j1−j2|≤m
∑2j1−1

k1=0

∑2j2−1
k2=0 d

(11)
1 j,kψ1(2j1x1 − k1)ψ0(2j2x2 − k2)

+
∑J−1

j1=m

∑2j1−1
k1=0

∑2j1−m−1
k2=0 d

(10)
1 (j1,j1−m)kψ1(2j1x1 − k1)ϕ0(2j1−mx2 − k2)

+
∑J−1

j2=m

∑2j2−m−1
k1=0

∑2j2−1
k2=0 d

(01)
1 (j2−m,j2)kϕ1(2j2−mx1 − k1)ψ0(2j2x2 − k2)

u2 =
∑

0≤j1,j2≤J−1, |j1−j2|≤m
∑2j1−1

k1=0

∑2j2−1
k2=0 d

(11)
2 j,kψ0(2j1x1 − k1)ψ1(2j2x2 − k2)

+
∑J−1

j1=m

∑2j1−1
k1=0

∑2j1−m−1
k2=0 d

(10)
2 (j1,j1−m)k

ψ0(2j1x1 − k1)ϕ1(2j1−mx2 − k2)

+
∑J−1

j2=m

∑2j2−m−1
k1=0

∑2j2−1
k2=0 d

(01)
2 (j2−m,j2)kϕ0(2j2−mx1 − k1)ψ1(2j2x2 − k2)

Then we obtain the decomposition:

u =
∑

ε,j,k

ddiv ε
j,k Ψdiv ε

j,k + dn ε
j,kΨn ε

j,k

with the wavelets Ψdiv ε and Ψn ε introduced in Section 3.2. The wavelet coefficients ddiv ε
j,k

and dn ε
j,k are given by: 




d
div (11)
j,k =

2j2d
(11)
1 j,k−2j1d

(11)
2 j,k

22j1 +22j2

d
n (11)
j,k =

2j1d
(11)
1 j,k+2j2d

(11)
2 j,k

22j1 +22j2
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and 



d
div (10)
j,k = 2−j1d(10)

2 j,k

d
n (11)
j,k = d

(10)
1 j,k + 2−m−2d

(10)
2 j,k − 2−m−2d

(10)
2 j,(k1,k2−1)

and 



d
div (01)
j,k = 2−j2d(01)

1 j,k

d
n (01)
j,k = d

(01)
2 j,k + 2−m−2d

(01)
1 j,k − 2−m−2d

(01)
1 j,(k1−1,k2)

Appendix C: Order two Navier-Stokes numerical scheme

We present the pseudo-code corresponding to Section 3.1.2, in dimension two.

Sub-routines:

• Fast divergence-free Wavelet Transform: ddiv = FWTdiv(c)
c = coefficients of the discretization of a vector function u on the scaling functions
(ϕ1ϕ0, ϕ0ϕ1).

• Inverse Fast divergence-free Wavelet Transform: c = IFWTdiv(ddiv)

• Wavelet Helmholtz Decomposition: ddiv = WHD(u, ddiv
0 , It)

u = vector function to decompose: u = udiv + ucurl, udiv =
∑
ddivΨdiv,

ddiv
0 = initial guess for ddiv,
It = number of iterations.

• Implicit Heat Kernel Integrator: ddiv
1 = IKI(ddiv

0 , α, It)
solves (Id− α∆)u = v with v =

∑
ddiv

0 Ψdiv, and u =
∑
ddiv

1 Ψdiv unknown.

Navier-Stokes solver order two:
Loop on time tn = nδt

1. (cn) = IFWTdiv(ddiv
n ) (computation of un)

2. ugun = (un · ∇)un

3. ddiv
ugun

= WHD(ugun, d
div
ugun−1/2 , It1)

4. ddiv
n+1/2 = IKI(ddiv

n − δt
2
ddiv
ugun

, νδt
2
, It2)

5. (cn+1/2) = IFWTdiv(ddiv
n+1/2) (computation of un+1/2)

6. ugun+1/2 = (un+1/2 · ∇)un+1/2

7. ddiv
ugun+1/2

= WHD(ugun+1/2, d
div
ugun

, It1)

8. (c∆un) = approximation of ∆un in the MRA (ϕ1ϕ0, ϕ0ϕ1)

9. (ddiv
∆un

) = FWTdiv(c∆un)

10. ddiv
n+1 = IKI(ddiv

n + δt(−ddiv
ugun+1/2

+ ν
2
ddiv
∆un

), νδt
2
, It2)

End of the loop
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