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SIX-DIMENSIONAL ADAPTIVE SIMULATION OF THE VLASOV
EQUATIONS USING A HIERARCHICAL BASIS∗

ERWAN DERIAZ† AND SÉBASTIEN PEIRANI‡

Abstract. We present an original adaptive scheme using a dynamically refined grid for the
simulation of the six-dimensional Vlasov–Poisson equations. The distribution function is represented
in a hierarchical basis that retains only the most significant coefficients. This allows considerable
savings in terms of computational time and memory usage. The proposed scheme involves the
mathematical formalism of multiresolution analysis and computer implementation of adaptive mesh
refinement. We apply a finite difference method to approximate the Vlasov–Poisson equations, al-
though other numerical methods could be considered. Numerical experiments are presented for the
d-dimensional Vlasov–Poisson equations in the full 2d-dimensional phase space for d = 1, 2, or 3.
The six-dimensional case is compared to a Gadget N-body simulation.
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1. Introduction. The general idea of adaptivity in numerical analysis lies in
the representation of a complex system by a reduced number of elements. It aims
to decrease the computational time and memory resources needed to simulate the
system. Often, the situation boils down to a trade-off between a numerical volume
(computer memory, number of elementary operations, etc.) and an increase in the
implementation complexity (data structures or algorithms).

The most common adaptive technique used in mechanics [24, 40, 45, 52, 53],
physics [7, 42], and astrophysics [1, 59, 60] is called adaptive mesh refinement (AMR).
In AMR, a Cartesian grid refines locally into finer Cartesian grids. Such refinement
is often associated with finite volume methods [40, 52, 60]. We can distinguish two
different approaches among AMR methods: in patch-based AMR the data structure
is a collection of grids of varying sizes and accuracies, which are embedded within each
other [42, 56], whereas in the fully threaded tree AMR the points or cells, or groups
thereof, are stored in the nodes or leaves of a large tree structure [11, 36, 52, 53, 60].
We use the latter method.

In the present study, we are particularly interested in using adaptive methods to
tackle the simulation of large systems. Most of these rely on reduced functional basis
discretization. This implicates finite elements where the underlying mesh does not
have to be Cartesian [41, 55], wavelets associated with a vast nonlinear approximation
theory [17], and spectral methods that show a good numerical accuracy [31, 51]. The
hierarchical bases [7] are special kinds of wavelet bases for which the primal scaling
function and the primal wavelet are identical, although their duals remain different.
A sparse grid method itself [7, 50] is a subclass of hierarchical bases. It is similar
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to the hyperbolic—anisotropic—hierarchical base. It allows approximation of high-
dimensional problems for which there is no medium or high frequency oscillation [10,
37]. Tensorization consists of expressing a multidimensional function as the product of
matrices of one-dimensional functions, i.e., one matrix per dimension [49]. This allows
simulation of high-dimensional models such as the three-dimensional Vlasov–Poisson
equations for problems with low effective dimensionality [47].

Passing from the classical two- and three-dimensional AMR to a six-dimensional
one forces us to adopt an efficient implementation and apply simplified numerical
methods. More specifically, we propose a hierarchical basis associated with an Eule-
rian discretization onto which we apply finite difference schemes. As recommended
[34], we avoid dissipation by using a third-order scheme for the convection.

The method presented largely relies on classical AMR [40, 60, 52, 45, 62, 7, 56,
11, 15]. It is not intended to compete with present and efficient Vlasov solvers using
Eulerian [4, 32, 33, 34, 61], semi-Lagrangian [57], or Lagrangian [9, 19, 22, 59] schemes
for the lower two- and four-dimensional phase-space simulations. For these, AMRs
have already been widely tested [7, 42, 56, 62]. However, the method used compares
favorably with the existing six-dimensional Eulerian Vlasov–Poisson simulations [48,
61] and appears complementary to the widely used N-body simulations [59].

The Vlasov solvers provide noiseless, accurate, numerical solutions and are useful,
for example, in magneto-sheath simulations for which the Vlasiator code is developed
in six dimensions [2]. In [54] the authors of the Vlasiator code point out that six-
dimensional Vlasov simulations would benefit from adaptivity.

More specifically, the reader who is interested in comparing the merits of the
various Vlasov solvers can refer to [14] for a short and well-argued discussion on this
topic. The AMR adaptivity demonstrates valuable assets when the solution develops
well-localized singularities [60, 45].

In the community research into rarefied gases, the Boltzmann equation is also
six-dimensional and implies a phase-space distribution function. This differs from the
Vlasov equations by the addition of a collision operator. To tackle the huge numerical
figures in this domain, adaptive techniques were developed. For example, an efficient
one consists of discretizing the distribution function in a fixed physical grid where each
point contains an adaptive local velocity grid [12, 13]. Kolobov and Arslanbekov also
proposed an adaptive scheme called the AMAR scheme [46]. Here the AMR of the
velocity space is associated with an automatic selection of the kinetic or continuum
solvers. In [5] a tree of trees discretization was proposed. This corresponds to an AMR
tree in physical space where each leaf contains an AMR tree of the velocity space.
Our scheme differs from such approaches by the fact that both physical and velocity
spaces are refined simultaneously in an AMR which discretizes the phase space as a
whole.

This paper is organized as follows. In section 2 we describe the wavelet basis
derived from polynomial interpolation and the AMR finite differences discretization.
In section 3 we introduce and detail the adaptive process. Finally, in the numerical
experiments section (section 4), we apply this hierarchical basis adaptive scheme to
Vlasov–Poisson equation simulations in the full two-dimensional, four-dimensional,
and six-dimensional phase spaces. These equations model collision-free plasmas as
well as gravitational systems.

2. The hierarchical basis adaptive scheme.

2.1. Deslauriers–Dubuc wavelet expansion. We consider a function f :
Ω → R, x 7→ f(x) with Ω = [0, 1]d and periodic boundary conditions. We assume
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that we know the values of f at points (xλ)λ∈Λ located at dyadic positions indexed
by λ = (j, k1, . . . , kd), j ≥ 0, and 0 ≤ ki < 2j ∀i ∈ [1, d], and defined by

(1) xλ = (2−jk1, . . . , 2
−jkd).

The set Λ resembles the indices of the retained points (xλ)λ∈Λ. It is constructed
according to the local behavior of f through a wavelet expansion which is thresholded
respecting a graduation condition (see section 3.3). We denote ΩΛ = {xλ, λ ∈ Λ}.
We find that x(j,k1,...,kd) = x(j+1,2k1,...,2kd), so the set Λ may contain different indices
corresponding to a unique point.

We separate the set Λ into sets Λj containing the indices of level j such that
λ ∈ Λj =⇒ λ = (j, k1, . . . , kd). We denote Ωj = {xλ, λ ∈ Λj}. Hence

(2) ΩΛ =
⋃
j≥0

Ωj .

The set Ωj+1 is constructed depending on the set Ω′j ⊂ Ωj of points where we want
to refine the approximation of the function f . Hence Ω′j = Ωj ∩Ωj+1. Then if a point
of the level j+ 1 can be interpolated from Ω′j—with a given interpolation process—it
is activated and belongs to Ωj+1.

As a result, for most of the interpolation processes, a point has all its ancestors
present in the coarser levels. Thus, if λ = (j, k1, . . . , kd) belongs to Λj , then (j −
1, k1/2, . . . , kd/2)—where k/2 denotes the integer division of k by two—belongs to
Λj−1. This corresponds to the definition of a fully threaded tree.

Remark 2.1. For the sake of simplicity of the algorithms, we make all the sets Ωj
self-sufficient regarding basic computations: the interpolation and differentiation at
points in Ωj call point values from Ωj exclusively. Hence the transfer of information
between the levels j − 1 and j is carried out only through common elements of the
set Ω′j−1 = Ωj−1 ∩ Ωj .

Actually, this construction is closely related to the multiresolution analysis for-
malism (see Appendix A). The function f whose point values are known at (xλ)λ∈Λ

is uniquely decomposed into the interpolet hierarchical basis (Φλ)λ∈Λ̃ (see Appendix

B for the definition of interpolet) with the set Λ̃ such that ΩΛ̃ = ΩΛ and for all

λ = (j, k1, . . . , kd) ∈ Λ̃ at least one ki is odd. Thus, we exclude the case where one
point belongs to two different levels: x(j,k1,...,kd) = x(j+1,2k1,...,2kd). This induces a

bijection between the sets Λ̃ and ΩΛ, hence the decomposition

(3) (f(x))x∈ΩΛ
⇐⇒ f =

∑
λ∈Λ̃

dλΦλ.

As is usual in multiresolution analysis, the multidimensional interpolet Φλ is defined as
the tensorial product of one-dimensional interpolets ϕj,ki(xi). For λ = (j, k1, . . . , kd),

(4) Φλ(x) = ϕj,k1(x1)× · · · × ϕj,kd(xd),

with the usual wavelet notation ϕj,k(x) = ϕ(2jx − k). The interpolets (ϕj,k) are
interpolant scaling functions: ϕ(0) = 1 and ϕ(k) = 0 ∀k 6= 0 (see [27] and Appendix
B for more details). The algorithm that transforms (f(xλ))λ into (dλ)λ, as well as its
inverse, has linear complexity. It simply boils down to a question of computing the
residuals of the interpolation of level j by level j − 1 for all levels where j ≥ 1.
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Fig. 1. Refinement of a two-dimensional grid: the interpolation process is from the set Ωj−1

in black to the set Ωj in green. The blue crosses represent all the possible points which are not
activated because they cannot be interpolated from Ωj−1 ∩ Ωj .

The expansion (3) allows a straightforward projection along any direction. For
instance, let us assume that we want to integrate the two-dimensional function f ,

(5) f(x1, x2) =

jmax∑
j=0

2j−1∑
k1,k2=0

dj,k1,k2
ϕj,k1

(x1)ϕj,k2
(x2),

along x1. As
∫
x
ϕj,k(x) dx = 2−j

∫
x
ϕ(x) dx = 2−j , we have the exact integration

formula

F (x2) =

∫
x1

f(x1, x2) dx1 =

jmax∑
j=0

2j−1∑
k2=0

2j−1∑
k1=0

dj,k1,k2

∫
x1

ϕj,k1
(x1) dx1

ϕj,k2
(x2)(6)

=

jmax∑
j=0

2j−1∑
k2=0

2−j

2j−1∑
k1=0

dj,k1,k2

ϕj,k2
(x2).

This is particularly useful when solving the Vlasov–Poisson equation responsible for
computing density; see (21) and (29) in the numerical experiments section (section 4).

2.2. Multidimensional interpolation. The sets (Ωj) are linked by an inter-
polation relationship: all the points of Ωj can be interpolated from the points of
Ωj−1 ∩ Ωj . This relationship shapes the set (Ωj), as can be seen in Figure 1.

The algorithm allocates a set of possible points: a node (j,k) at level j with
k = (k1, . . . , kd) ∈ [0, 2j−1 − 1]d may contain the 2d points {2−j(2k + ε), ε ∈ {0, 1}d}.
From this set, we determine which points are activated and which are not. A point
is activated if and only if it has a place in a node and it can be interpolated from
the other active points using the interpolation algorithm. Then we carry on the
computation only on active points.

Using the fourth-order interpolet hierarchical basis presented in Appendix B is
equivalent to applying the fourth-order interpolation:

(7) I4 f(x) =
−f(x− 3h) + 9 f(x− h) + 9 f(x+ h)− f(x+ 3h)

16
.

In multidimensional simulations, the interpolation operates in a tensorial way.
Hence, each point of the set Ωj \ Ωj−1 calls one interpolation involving four points.
As a result the complexity of the interpolation algorithm remains linear with respect
to the number of points independently of the dimensionality.
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2.3. Finite difference on the adaptive grid. We opted for finite difference
because it is easy to implement. This choice also allows the scheme to reach the
third-order of accuracy in any dimension for a sufficiently smooth solution at a linear
price, irrespective of the number of dimensions. Meanwhile its accuracy and stability
are comparable to classical two- and three-dimensional AMR finite volume methods
[52, 45].

Nevertheless this method is not optimal for simulating the Vlasov–Poisson prob-
lem for which semi-Lagrangian methods perform much better [34]. In particular,
it suffers from several drawbacks. First, the time step has to satisfy a Courant–
Friedrichs–Lewy (CFL) condition (equation (10)). Second, one can note the appear-
ance of spurious oscillations and nonpositive values in the distribution function. These
are seen in the case of unsmooth solutions. These issues can be addressed thanks to
WENO schemes and positivity preserving methods [16]. Third, in contrast to finite-
volume methods, this method does not conserve the mass on nonuniform meshes.

To apply the finite difference scheme in the multilevel adaptive grid in Figure
1, we need to navigate through the sets Ωj for j going from 1 to jmax. The set
Ω1 is a uniform grid with 2d points and a step equal to 1/2. We apply the fifth-
order differentiation with periodic boundary conditions. Then we apply the following
operations recursively for j from 2 to jmax:

• we transfer the differentiation values obtained at the points belonging to the
Ωj−1 ∩ Ωj intersection from Ωj−1 to Ωj ,

• we interpolate from these to all the points of Ωj ,
• we compute the differentiation using a high-order scheme and replace the

interpolated values by these more local ones when they exist.
For numerical experiments, we apply the differentiation formulae of Appendix C.
When possible, we choose the fifth-order scheme as this comes with little cost (an
increase of less than 20%) and improves both accuracy and conservation. The numer-
ical errors resulting from the differentiation scheme of Appendix C are at least of the
third order, as can be verified in the numerical experiments section, section 4.1.

2.4. CFL stability condition on the adaptive grid. Let us consider the
following equation for the convection of a distribution function f by a velocity function
v : Td → Rd:

(8) ∂tf(t,x) + v(x) · ∇f(t,x) = 0,

where ∇f = (∂1f, ∂2f, . . . , ∂df) and v · ∇f =
∑
i vi∂if . To deal with any convection

equation of the form (8) using the hierarchical basis adaptive scheme developed in
section 2.1, we apply the third-order upwind finite difference scheme described in
Appendix C. Particular care was given to the CFL condition that provides an upper
limit to the time step.

We optimize the CFL condition, to benefit from the adaptability of the grid. We
apply a fourth-order Runge–Kutta scheme in time coordinate [38] to (8). For finite
difference schemes, on a uniform grid with a space step h, the CFL condition on the
time step δt is given by

(9) δt ≤ C h

maxx∈Ω ‖v(x)‖`1

with the constant C equal to approximately 1.73 in our case (from [25] and exper-

iments carried out by ourselves) and ‖v(x)‖`1 =
∑d
i=1 |vi(x)|. In the case of an
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adaptive grid, the space step h of the grid depends on the position x in the compu-
tational domain Ω. Then as already noticed [42] this allows mitigation of the CFL
condition. The latter becomes

(10) δt ≤ C min
x∈Ω

h(x)

‖v(x)‖`1
.

This condition on the time step, written in phase-space coordinates, is particularly
advantageous, since the high velocity parts of the grid generally present a low refine-
ment: usually, h(x)� h(0) for x such that ‖v(x)‖ � ‖v(0)‖. Thus the time step δt
remains large even when large values of maxx∈Ω ‖v(x)‖`1 appear in the phase-space
grid coordinates.

3. Adaptation.

3.1. Brief error analysis. Numerical errors appear under three circumstances:
when a new point is interpolated, when the differentiation scheme is applied, and
when the solution is updated with the time scheme.

We assume that the solution is C∞, which is precisely the case for Vlasov–Poisson
equations if we begin at a C∞ initial condition. Then with the fourth-order hierar-
chical basis, the interpolation error is of the order of O(h4). The finite differences
described in section 2.3 provide a differentiation of the order of O(h3) and the fourth-
order Runge–Kutta scheme is of the order of O(δt4), i.e., O(h4) in the CFL condition.

As a result, the dominating error theoretically comes from the third-order ap-
proximation of the derivative of the distribution function f . This error is detailed in
Appendix C. For the various third-order finite differences, it is of the type C h3f (4).

3.2. Minimization of the nonlinear approximation error. The function
f is decomposed into a basis (Φλ) in (3). We are looking for a criterion to reduce
the number of coefficients dλ. The most significant ones are kept and the others are
taken to be equal to zero.

The AMR users apply criteria on low-order derivatives of f such as the absolute
value of the function f , e.g., in [60] the AMR maps a mass distribution function and
each cell contains the same quantity of mass; the gradient of f in Harten’s discrete
framework [40, 53]; or, more recently, the second derivatives of f described in [62].
Such criteria allow us to automatically and efficiently refine or unrefine the compu-
tational grid according to the local regularity of the function f , without too many
theoretical considerations concerning the nonlinear approximation.

In our case, the overhead cost of the six-dimensional approximation incites us to
follow more optimal criteria. It is known from the nonlinear approximation theory [17]
that for Φ ∈ Bsq(Lp) the hierarchical basis expansion (3) allows the superior bound to
be computed:

(11) ‖f‖Bs
q(Lp) = O

(∥∥∥∥(2s j2−
d j
p ‖(dλ)λ∈Ωj

‖`p
)
j≥0

∥∥∥∥
`q

)
.

Minimizing the Lp-norm of the error on the sth derivative of f , the distribution
function, is equivalent to minimizing the Bsp(L

p)-norm of the residuals. For a given

ε > 0 this corresponds to discarding the coefficients dλ such that 2(s− d
p )j |dλ| < ε.

This provides the criterion to save the most significant coefficients dλ:

(12) |dλ| ≥ 2(−s+ d
p )jε.
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jkw

Fig. 2. Elementary cube for the refinement.

Contrary to a tensorial intuition, the exponent α = −s + d
p has the advantage of

a flatter adaptive grid for a higher number of dimensions. In the future, we aim to
minimize the Lp-norm of the error on the gradient of the distribution function (s = 1).
Nevertheless, because of the interlinking of the levels Ωj between themselves through
the interpolation scheme, and because of the scarcity of the points in six dimensions,
the α = −1 exponent which theoretically minimizes the L∞-norm of the error is not
optimal in practice, as we will see in the numerical experiments shown later in Figure
7. We observe a kind of shift to a larger optimal α.

3.3. Refining and coarsening in practice. Let us assume we defined a value
α ∈ R that is relevant for the numerical experiment and an ε > 0 adapted to the
available computer memory.

First, in a bottom-up algorithm—where j ranges from jmax to 2—we compute the
residuals of the fourth-order interpolation of level Ωj by level Ωj−1. This is equivalent
to a transformation in the isotropic fourth-order hierarchical basis (3).

Then we gather the residual dj,k′ values from (3), where the points 2−jk′ inside
the cubes are centered on points of the type 2−j(2`1 + 1, . . . , 2`d + 1) as indicated in
Figure 2. For k = (2`1 + 1, . . . , 2`d + 1), this yields a refinement weight associated to
this cube:

(13) w2
j,k =

∑
e∈{−1,0,+1}d

d2
j,k+e.

Finally we apply the following refinement events in the following order:
• if wj,k > 2αjε, the 3d points inside the area are refined creating 3d nodes at

the level j + 1 (if this is not the case already);
• if wj,k > 2αj−1ε, then the nodes inside the area are preserved and we activate

(i.e., create or preserve) the neighboring nodes within two ranks or one rank
depending on whether it is located under the wind;

• we simulate an interpolation to see which points inside the nodes are attain-
able by the interpolation algorithm (see section 2.2), and these are activated;

• if a point 2−jk is not active, it is removed from the memory, and if a node con-
tains no active point, it is also removed (see Appendix D for the relationship
between a node and the points it contains).

Sometimes, we also fix a maximum level of refinement jMax such that j ≤ jMax.
The larger α is, the closer the grid will be to a uniform one. Varying ε allows an

increase or a decrease in the number of grid points to cope with the memory storage
limitation of the computer (see the numerical experiments in section 4).

3.4. Adaptive numerical scheme for the Vlasov–Poisson equation. To
simulate the Vlasov–Poisson equations (19), we apply a fourth-order Runge–Kutta
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scheme in time and a third-order upwind finite difference in space. The refinement of
the grid is applied once at every time step. Hence we iterate the following algorithm:

0) at time tn the numerical approximation fn of the distribution function
f(tn,x,v) is given on the adaptive grid Ωn,

1) we project fn onto the physical space x and we compute the electric field En,
2) we compute k1 = −v · ∇xfn − En · ∇vfn with the finite difference scheme

detailed in Appendix C,
3) we compute δt due to formula (10),
4) we carry out the first intermediate step of the Runge–Kutta scheme, f(1) =

fn + k1

2 δt,
5) similarly to steps 2) and 4) we compute the next steps ki and f(i) of the

Runge–Kutta scheme,
6) we obtain the distribution function at time tn+1 = tn + δt, that is, fn+1 =

fn + 1
6 (k1 + 2 k2 + 2 k3 + k4)δt,

7) finally, given fn+1 on Ωn and the process detailed in section 3.3 we update
the grid Ωn to obtain Ωn+1.

4. Numerical experiments. In this section we describe tests in various situa-
tions of the adaptive numerical scheme developed in this paper. First, as this method
specifically targets six-dimensional simulations, we test the transport of a Gaussian
function in a six-dimensional box. We compare the AMR results with those obtained
with the help of a semi-Lagrangian scheme on a uniform grid. Then we check its
properties on classical two-dimensional plasma test cases: the Landau damping and
the bump-on-tail instability cases. The simulation of the two-stream instability in two
dimensions (four-dimensional phase space) from [32] shows the limits of this method
with finite differences when applied to the electric case. Finally, we present an aca-
demic six-dimensional astrophysics simulation: the merging of two halos in the full
six-dimensional phase space.

4.1. Convection and stretching of a six-dimensional Gaussian function.
The numerical experiment consists of convecting a Gaussian function

(14) f0(x) = exp

(
−‖x− x0‖2

2σ2

)
with x0 = ( 1

2 , . . . ,
1
2 ) and the standard deviation of the Gaussian σ = 0.1 inside the

six-dimensional box T6 = [0, 1]6 with periodic boundary conditions, for the velocity
field:

(15) v(x1, x2, . . . , x6) =


1

cos(2πx1 + 1)
cos(2πx1 + 2)

...
cos(2πx1 + 5)

 .
For any particle at position X(t) = (Xi(t))1≤i≤6 at time t = 0, the constant velocity
v1 = 1 gives X1(t) = X1(0) + t and, for 2 ≤ i ≤ 6,∫ t

s=0

vi(X(s)) ds =

∫ t

s=0

cos(2πs+ 2πX1(0) + i− 1) ds(16)

=

[
1

2π
sin(2πs+ 2πX1(0) + i− 1)

]t
0

=
1

2π
(sin(2π(X1(0) + t) + i− 1)− sin(2π(X1(0)) + i− 1)) .
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t = 0 t = 0.2 t = 0.7 t = 1

min 0 max

Fig. 3. Projective view in the (x1, x2) plan of the six-dimensional convected Gaussian function
at times t = 0, t = 0.2, t = 0.7, and t = 1. First row: the distribution function. Second row: the
adaptive grid.

Hence, the exact solution is given by

f(t,x) = f0(x1 − t, x2 −
1

2π
(sin(2πx1 + 1)− sin(2π(x1 − t) + 1)) , . . .(17)

. . . , x6 −
1

2π
(sin(2πx1 + 5)− sin(2π(x1 − t) + 5)))

so we can compute the error exactly.
The code is written in C and parallelized with Open-MP. This experiment requires

approximately 2e+8 points over 400 time steps. It takes 33 hours on the 40 threads
of a 2.50 GHz Intel Xeon E5-2670 processor with 32 GB RAM memory.

In Figure 3, we represent a two-dimensional projection onto (x1, x2) of both the
distribution function and the adaptive grid. The maximum refinement level (in dark
green) corresponds to a 1286 uniform grid equivalent accuracy. The time step is taken
as being constant and equal to

δt =
1

400
close to the CFL maximum C

h

‖v‖`1
≈ 1

344

with C = 1.73, h = 2−7, and ‖v‖`1 ≈ 4.642.
Let us assume that we want to minimize the L∞ error on f(t,x). The parameter

α forces the threshold 2α jε to depend on j. From section 3.2 its theoretical optimal
value is given by α = −s+ d

p to minimze the Lp-norm of the sth derivative in dimension
d. Hence, for s = 0, p = +∞, and d = 6, we obtain α = 0. Since we need to compute
the gradient of f to solve the convection equation, a part of the error comes from the
first derivative. For s = 1, d = 6, and α = 0 we find p = 6. So the choice α = 0
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distribution function in L2- and L∞-norms.

minimizes the L6-norm of the gradient of f and, through the solution of the transport
equation, the L6-norm of f . The initial value of ε is fixed at 3e–4.

In Figure 3, we observe that the refinement of the grid follows the stretched
Gaussian function. The L∞ error appears primarily at the boundaries between the
different levels of refinement ahead of the Gaussian function.

Regarding the color scale of Figure 3, dark blue stands for zero and dark red
for the maximum value. This color scale is used in all other figures that represent a
distribution function.

The L∞-norm of the error remains inferior to 8%, as shown in Figure 4. Relative
error means the ratio between the norm of the error and the norm of the Gaussian
function. In this figure, we also represent the L2-norm of the error, the minimum
value of the solution (which shows that the scheme does not conserve positivity), the
threshold ε used to form the adaptive grid, and the number of points of the grid.

These results are compared with a semi-Lagrangian simulation of the same six-
dimensional experiment (Figure 5). This simulation uses a Strang splitting and an
eighth-order Lagrange polynomial interpolation scheme. With an OpenMP paral-
lelization, the experiment took 6 hours for 100 time steps on the same 2.50 GHz
Intel Xeon E5-2670 computer as for the AMR code. The 32 GB RAM memory only
allowed a maximum of 39 points accuracy in each direction. This makes a total of
3.5e+9 points. To compare with the 2e+8 points of the AMR scheme, the L∞ error is
three times greater than for the AMR scheme and reaches 26%. The semi-Lagrangian
schemes of lower order (fourth and sixth) have even larger errors.

In Figure 4 the L2-norm of the error increases to twice the size of the L∞-norm.
This is due to the refinement criterion which minimizes the L∞-norm of the error and
not its L2-norm. When α = 0, the AMR scheme makes smaller errors on small scales
with large L∞-norms than on large scales with small L∞-norms. This is in contrast
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Fig. 5. Error analysis of a semi-Lagrangian simulation with 32 points (dashed lines) and 39
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in black, and the L2 error in red.

to the semi-Lagrangian uniform grid situation shown in Figure 5 where both L∞ and
L2-norms of the error evolve similarly.

The memory needed coincides with the number of points allocated (see Appendix
D). So as not to exceed the memory limit and to optimize memory use, we bound the
number of points with a maximum and a minimum materialized in Figure 4 by two
horizontal light blue dashed lines. The maximum is fixed to 2e+8 and the minimum
to 1.6e+8. Each time the number of points exceeds the maximum, the threshold ε is
increased by 10%. This triggers a drop in the number of allocated points and memory
required. It explains the sawtoothed aspect of the curve on which the number of
points is plotted in Figure 4 for t ∈ [0, 0.5]. In contrast, when the number of points
decreases, we can increase the accuracy by decreasing the threshold by 10%. This
occurs in the second part of the graph for t ∈ [0.5, 1] in Figure 4.

The error increases dramatically when the threshold ε is large. This coincides
with a major stretching of the distribution function at t = 0.5 in Figure 4.

In Figure 6, we plot the mass, the L2-norm, and the maximum of the distribution
function against time. These curves show a precision of 6% for the maximum and 2%
for the mass. The curves represent relative values compared to the initial one, so they
are equal to 1 at time t = 0.

The fast oscillations of the maximum correspond to shifting of the true maximum
of the solution from one point of the mesh to another one.

We apply the same experimental conditions to assess the convergence of the hi-
erarchical basis adaptive scheme and estimate the optimal choice for the value of the
parameter α involved in the refinement process. This is discussed in sections 3.2 and
3.3. We perform the experiment until t = 0.1 and compare the numerical result ob-
tained with the exact solution. In Figure 7 we plot the error in L∞-norm and L2-norm
for the numbers of points varying from approximatively 2e+6 to 4e+8.
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We would expect a third-order convergence to the exact solution and as the num-

ber of points is linked to an average h: N = O(h
−6

), for a pth-order method, we
obtain

(18) e = O
(
h
p
)

= O
(

(N1/6)−p
)

= O

(
1

Np/6

)
,

which leads to a convergence in O(N−0.5).
Nevertheless, in Figure 7 we observe experimentally an order 0.8–0.9 convergence

in L∞- and L2-norms. This probably means that the fifth-order finite difference
scheme used in the interior of the refinement levels dominates the convergence rate.
This corresponds to p = 5 and a convergence rate of e = O(N−0.83).
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Although we would expect α = −1 to be optimal for L∞ approximations, it rather
looks as though α = 2 provides the best results. For the L2-norm, the experimental
results are in better agreement with the theory since α = 3 seems to be optimal, close
to the theoretically optimal α = 2 . The experiments shown in Figures 3 and 6 would
have been even more successful using α ∈ [1, 2] instead of α = 0.

Since the error is concentrated at the boundary of the refinement levels, the
activation of a new level triggers an increase in the L∞ error. This explains the
jumps in the L∞-norm of the error in the convergence plot shown in Figure 7.

4.2. Application to plasma physics. In plasma physics and astrophysics,
most of the Vlasov–Poisson simulations rely on particle-in-cell methods [19, 22], as
these allow six-dimensional phase-space simulations at a reasonable computational
cost. In these methods, the distribution function is coarsely discretized with Dirac
functions (particles) whose positions evolve through Lagrangian schemes. Recently,
grid-based Eulerian schemes have been developed [34], but the curse of dimensionality
[50] limits their application to at most four dimensions of the phase space [39].

Landau damping. We consider a distribution function f : R2d → R+, (x,v) 7→
f(x,v) subject to the Vlasov–Poisson equation:

(19) ∂tf + v · ∇xf + E(t,x) · ∇vf = 0

with the electric force

E(t,x) = ∇xφ(t,x),(20)

∆xφ(t,x) =

∫
v∈Rd

f(t,x,v) dv −
∫
x,v∈Rd

f(t,x,v) dv dx.(21)

To make the following simulation in the d = 1 dimension, f is taken to be periodic in
the x variable. The initial condition is given as follows: for (x, v) ∈ [−2π, 2π]× [−6, 6],

(22) f0(x, v) =
1− 0.05 cos(0.5x)√

2π
exp(−v2/2),

and we apply the hierarchical basis adaptive scheme for t ∈ [0, 100]. The refinement
parameter α is taken as being equal to 1.7, while the grid (Figure 8) begins with 3,332
points and reaches a maximum of 45,522 at t = 57.08.

We integrate f in (21) due to its hierarchical basis expansion (equation (3)).
Hence we sum the coefficients in the velocity direction as indicated in section 2.1
(equation (6)). Then (21) and (20) are solved using one-dimensional Fourier trans-
forms.

The electric field (Figure 9) reproduces its classical curve in the Landau damping
with the correct damping rate.

Bump-on-tail instability. Here we simulate the bump-on-tail instability with the
hierarchical basis adaptive scheme. In [42], the authors tested a block-structured
AMR using a high-order finite volume scheme. We obtain results similar to those
described in that paper.

The simulation box is (x, v) ∈ [− 10
3 π,

10
3 π] × [−10, 10]. The initial condition is

given by

(23) f0(x, v) =

(
0.9√
2π
e−

v2

2 +
0.2√
2π
e−4(v−4.5)2

)
(1 + 0.04 cos(0.3x)) .
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Fig. 8. The distribution function (left panel) and the adaptive grid (right panel) at t = 22
during the Landau damping experiment.
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Fig. 9. Landau damping of the electric field.

The simulation is plotted in Figure 10 and shows a very good agreement with the
results presented in [42]. We observe that the fine mesh shown in purple, equivalent
to a 10242 uniform mesh, follows the filaments accurately. If the reader is interested
in following precisely the behavior and shape of the filaments, the AMR method may
compete with uniform grid methods even in one dimension.

In Figure 11 we demonstrate that the number of points varies from 17,000 at the
beginning to 150,000 at the maximum complexity. The refinement parameters were
fixed at α = 1.7 and ε = 7.18e–9.

Figure 12 illustrates major defects of the proposed AMR method for the simu-
lation of the Vlasov–Poisson equations. It does not conserve the mass and it makes
negative values appear.

Figure 13 shows that although the kinetic energy and the potential energy tend
to compensate each other, the total energy drifts away from its initial value.
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Fig. 10. Bump-on-tail instability (1D). First row: the distribution function. Second row: the
adaptive grid.
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Fig. 11. Evolution of the number of grid points in the AMR.

The case of four-dimensional phase space: The two-beam instability. We apply
the hierarchical basis adaptive scheme to a two-dimensional Vlasov–Poisson test case:
the Fijalkow two-beam instability. Although this experiment does not fully correspond
to the general initial conditions presented in [32], we refer to this author because he
has extensively simulated the two-dimensional behavior of phase-space holes. This
is a rather novel result concerning AMR simulation of Vlasov–Poisson equations,
since authors of AMR Vlasov–Poisson numerical simulations usually restrict their
experiments to one-dimensional cases [42, 56] with an exception in [43].

In the simulation box (x, y, u, v) ∈ [− 10π
3 , 10π

3 ]2×[−3π, 3π]2 with periodic bound-
ary conditions, we consider the initial distribution function:

(24) f0(x, y, u, v) =
7

4π
exp

(
−u

2 + 4 v2

8

)
sin2

(u
3

)
(1 + 0.05 cos(0.3x)) .
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This initial distribution is represented in Figure 14. It was chosen to maximize
the two-stream instability. Initially, it is discretized with 4.7e+6 points and has a
maximum level of refinement equivalent to a 644 uniform grid. The thresholding pa-
rameters are taken as follows: α= 1.5 and ε= 1.59e–6 initially, but ε varies thereafter.

In Figure 15 we represent the numerical solution at t = 12 when instability begins
to develop. The maximum refinement goes up to 2564 (red points in Figure 15, right).
At this moment, the number of active points increases to 53e+6, while the threshold
ε stays constant at 1.59e–6 (see Figure 16).

We take 60e+6 as the maximum number of points. When the nonlinear regime
develops after t = 12, steep fronts appear throughout the domain in the (x, y) direc-
tion. This results in a large increase in the number of points and then of the threshold
ε (Figure 16). When the threshold becomes too large, the conserved quantities begin
to vary by a few percent (Figure 17) and the energy drops (Figure 18).

Here, we measure the inability of the present finite difference AMR scheme to cap-
ture steep filaments distributed homogeneously in the spatial domain (x, y). It would
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Fig. 14. Phase space view of the initial condition, equation (24). Cuts of the distribution
function and of the adaptive grid along (x, u) at y = v = 0 are shown.

Fig. 15. Cut along (x, u) of the distribution function at y = v = 0 in the phase space at time
t = 12.

probably work better if we refine only in the velocity (u, v) direction as suggested in
[46, 5, 12, 13].

4.3. Six-dimensional astrophysics case: The merging of two dark mat-
ter halos. To apply the hierarchical basis adaptive scheme to a six-dimensional phase
space problem, we switch from plasma physics to astrophysics. In plasma physics
the distribution function tends to occupy the whole three-dimensional physical space,
while in the gravitational case it collapses. This latter case allows the adaptive scheme
to refine both velocity variables and space variables (see Figures 19 and 22). As a re-
sult we are able to simulate the gravitational Vlasov–Poisson equations at a reasonable
cost.

For a collisionless self-gravitating system, such as a galaxy or a dark matter halo,
the distribution function evolves in the phase space (x,v) ∈ R6, with x = (x, y, z)
and v = (u, v, w),

(25) f :
R× R3 × R3 → R+,

t,x,v 7→ f(t,x,v),
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and its motion is modeled by the gravitational Vlasov–Poisson equations:

∂tf + v · ∇xf + E(t,x) · ∇vf = 0,(26)

E(t,x) = −∇xφ(t,x),(27)

∆xφ(t,x) = 4πGρ(t,x)(28)

in which the density function ρ is given by

(29) ρ(t,x) =

∫
R3

f(t,x,v) dv.
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In comparison with plasma equations (20) and (21), we note, in particular, the sign “–”
in the force equation (27) which switches from repulsive to attractive, and the factor
“4π” (not eliminated when the equations are nondimensionalized in astrophysics)
in (28).

These equations admit stationary solutions [3, 8]. One of them, the Plummer
model, was successfully tested by Fujiwara in [35]. He used the symmetries of the
problem in a two-dimensional plus one invariant simulation. It is given by the following
distribution function:

f(r, ‖v‖) =
3M

7π3a3

(
2

(
1 +

( r
a

)2
)−1/2

− ‖v‖2
)7/2

(30)

if 2

(
1 +

( r
a

)2
)−1/2

− ‖v‖2 ≥ 0

and f(r, ‖v‖) = 0 otherwise.
We note r2 = x2 + y2 + z2 and ‖v‖2 = u2 + v2 + w2.
Then the potential function is given by

(31) φ(r) = −GM
a

(
1 +

( r
a

)2
)−1/2

and the density function by

(32) ρ(r) =
3M

4πa3

(
1 +

( r
a

)2
)−5/2

.

In these formulae, G denotes the gravity constant, M the total mass, and a a length
parameter. In the following simulations, these constants are taken to be equal to 1.

This distribution function (30) is compactly supported in velocity but not in
space.
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Fig. 19. The Plummer model. Left: two-dimensional cut at zero (0, 0, 0, 0, 0, 0) in (x, u)-view
of the Plummer model. Center: cut of the corresponding adaptive grid. Right: zoom at the center.

In Figure 19, we represent this stationary solution in an adaptive grid with a
criterion based on a second-order hierarchical basis decomposition. The maximum
level of refinement corresponds to a 2566 uniform grid (in red).

We apply the hierarchical basis adaptive scheme to the six-dimensional merging of
two spherical Plummer models. Hence we simulate the “collision” of two halos which,
when separated, form stable systems. We compare the results to those obtained
with Gadget, an N-body code extensively used in the literature [59]. Only the tree
code part of this “tree PM” algorithm is employed. A total of 500 million particles
and 10,932 time steps have been used to describe the merger process. We have also
considered a softening length of 6.84e–4. For other specific parameters (time step,
accuracy of the relative cell-opening criterion, etc.), we used the same values as those
in [18]. Running this Gadget simulation took 205.83 hours on 512 threads at the
Center for Computational Astrophysics of the National Astronomical Observatory of
Japan.

Concerning the AMR simulation, we solve the convection due to the scheme
described in section 2.4 with a fourth-order finite element hierarchical basis built from
polynomial interpolation (see Appendix B for more details) in expansion equation
(3). The gravitational forces are computed in the three-dimensional Fourier space on
a uniform grid of the smallest scale (i.e., with an FFT in a 5123 grid).

This FFT is of low cost compared to the six-dimensional grid computations. It
involves 29×3 = 227 ∼ 128e+6 points, which is smaller by a factor 40 than the 5e+9
points of the six-dimensional AMR grid. Nevertheless we plan to use a high-order
multigrid Poisson solver on the three-dimensional projected AMR grid in the near
future. A two-dimensional version of this Poisson solver has already been presented
in [23]. The three-dimensional version will be based on the HOC stencil [58].

The time step δt is computed at the beginning of each Runge–Kutta cycle by the
CFL formula (10) with C = 1. This value is below the CFL constant for uniform
domains C = 1.73. At the end of each Runge–Kutta cycle, we let the mesh evolve
as described in section 3.3 with α = 1.5 and ε = 3.128e–7 at t = 0 and we prescribe
the maximum number of points to be 5e+9. The value α = 1.5 corresponds to the
theoretical minimization of the approximation error of f in L4-norm and of ∇f in
L12/5-norm. It is fixed arbitrarily. The choice of ε = 3.128e–7 implies the activation
of 451,686,490 points at t = 0. This is a compromise between the speed of the
computations and the accuracy at the beginning of the simulation.

The initial conditions are sketched in Figure 20. Each sphere represents a sta-
tionary solution to equations (26–29) explicited in formula (30). The size of the box
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Fig. 20. Initial conditions for the interaction of two Plummer models.

is [−12, 12]3 × [−8, 8]3. We apply periodic boundary conditions. To visualize the
evolution of the six-dimensional numerical solution in the phase space, we make two-
dimensional cuts at zero and both two-dimensional and three-dimensional projections.
The color scale is the same as in Figure 3.

In Figure 21, we see the collision and merging of the two spheres in a three-
dimensional (x, y, z) projection.

Figure 22 represents cuts along the (z, w) plan of the six-dimensional phase space
at x = y = u = v = 0. It only gives insight into the complexity of the six-dimensional
solution. Figure 22, last row, represents a cut of thickness one-fiftieth of the domain
length (i.e., 0±Rmax/50 in the space directions and 0±Vmax/50 for the velocity direc-
tions). The Gadget N-body simulation provides noisy images due to the probabilistic
distribution of the particles inside the pixels which follows a Poisson distribution [59].
For λ ∈ (0,+∞) the average value of f in a given pixel, the probability of having
k ∈ N particles in this pixel is given by

(33) P(k) =
e−λλk

k!
.

The comparison with the Gadget simulation validates the results obtained with the
hierarchical basis adaptive scheme simulation in Figure 22.

In Figure 23, we plot
• the mass M(t) =

∫
x,v

f(x,v, t) dx dv,

• the L2-norm ‖f‖2(t) = (
∫
x,v

f(x,v, t)2 dx dv)
1
2 ,

• the entropy S(t) =
∫
x,v
−f(x,v, t) ln(f(x,v, t)) dx dv,

which are conserved quantities for Vlasov–Poisson equations.
In Figure 25 we also plot
• the kinetic energy

(34) Ec(t) =

∫
x,v

‖v‖2

2
f(x,v, t) dx dv.

The mass is not conserved and undergoes a decrease of 1.8% at t = 40. The en-
tropy increases reasonably, by 3.0%, and this increase can be explained by the usual
numerical averaging of the filaments [59].

We define the complexity of the solution at a given time t as the number of points
necessary to represent it in the hierarchical basis with a given accuracy (fixed by
the value of the threshold ε). Similarly it is defined as the inverse of the accuracy
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t = 0.6 t = 12.6

t = 15.6 t = 19.8

t = 25.8 t = 49.2

Fig. 21. Three-dimensional view in the physical space (x, y, z) of the collision of two Plummer
spheres at times t = 0.6, 12.6, 15.6, 19.8, 25.8, 49.2. This visualization was obtained for t ∈ [0, 60]
with the hierarchical basis adaptive scheme of second order.

(the threshold ε) for a given number of points. With respect to the evolution of the
threshold Figure 24, we can distinguish five phases:

1. for t ∈ [0, 13], the two spheres grow close, and the complexity stays steady;
2. for t ∈ [13, 16], at the first collision the complexity surges and the kinetic

energy makes a jump;
3. for t ∈ [16, 18], the spheres recede one from the other, and the complexity

only increases slowly;
4. for t ∈ [18, 30], the spheres interact again, which engenders filamentation

phenomena;
5. for t ∈ [30, 40], damping simplifies the solution; the number of points de-

creases; small scales are dissipated by the numerical scheme at scales close to
the local resolution of the grid.
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t = 15.2 t = 21.6 t = 33.6

min 0 max

Fig. 22. Cut in the (z, w)-direction of the six-dimensional phase space at times t = 15.2,
t = 21.6 and t = 33.6. First row: cut of the adaptive grid. Second row: cut of the density function
obtained with the hierarchical basis adaptive scheme. Third row: cut of a Gadget simulation.

The number of points peaks at a maximum of 5,000,000,000 points notwithstand-
ing a small incident at t = 20 without consequences. This triggers an increase of the
threshold ε due to memory limitations. Then, for a value of t greater than 30, it
starts to decrease. Running this experiment took 2,103 time steps and about 3,000
wall-clock hours (i.e., about 120 days) of computation on a node with 32 threads and
512 GB RAM on the Horizon cluster at the Institut d’Astrophysique de Paris. This
corresponds to almost 100,000 total CPU hours, i.e., very close to the 105,385 total
CPU hours of the Gadget simulation.



606 ERWAN DERIAZ AND SÉBASTIEN PEIRANI
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Fig. 23. Conservation analysis: plots of the mass, entropy and L2-norm.
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Fig. 24. Plots of the threshold ε (normalized scale) and the number of points.

It is complicated to compare these results with other Eulerian simulations since
the maximum accuracy of a six-dimensional uniform grid with double accuracy on a
node with 512 GB RAM is (512×210×3/8)1/6 = 64 points in each direction instead of
the 512 of the AMR scheme. The comparison on the Gaussian transport case shows
that the AMR approach is particularly interesting regarding the L∞ error, rather
than for computing macroscopic quantities such as the kinetic energy (Figure 25).

Yoshikawa, Yoshida, and Umemura made an Eulerian simulation of a six-
dimensional phase space astrophysics case [61]. In this latter reference, two King
spheres interact in a 646 uniform mesh (∼ 6.87e+10 points, applying a positive flux
conservation scheme [33] which is a kind of finite volume method, associated to a
massive MPI/OpenMP hybrid parallelization on 1,024 CPU cores on 64 nodes. Con-
trary to the AMR scheme in Figure 22, the coarseness of the grid in [61] prevents any
observation of fine details.
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Fig. 25. Plot of the kinetic energy Ec obtained with the AMR code (solid line) compared to the
one obtained in the Gadget simulation (dashed line).

5. Conclusion. This work shows the possibilities offered by the hierarchical
basis adaptive scheme to solve the Vlasov equations. This scheme provides a good
L∞ accuracy that is out of reach of traditional Eulerian schemes in six dimensions. Its
basic simplicity—finite differences and polynomial interpolation—caused some defects
that must be corrected: the mass and the energy are not conserved and underresolved
shock-like structures may deteriorate the solution.

This technique opens the way to further developments: to cope with the conser-
vation difficulty we can switch to finite volume schemes and adapt the AMR method
presented in [56] to the six-dimensional constraint, or we can continue with inter-
polet/finite differences and enforce the mass conservation by correcting the finite
difference scheme. The shock and negative value problems may be resolved by the
use of limiters and WENO schemes.

Other perspectives are to apply a semi-Lagrangian scheme [6] instead of the fi-
nite differences and to further reduce the number of degrees of freedom with six-
dimensional hyperbolic wavelets [28] whose use for dimensional reduction has been
put into practice in sparse grids [10]. It could be adapted to turbulent systems due to
the wavelets described in [26] that are intermediate between multiresolution analysis
isotropic wavelets and hyperbolic anisotropic wavelets. It may be the best way to
make the six-dimensional Vlasov solver a routine numerical tool.

Appendix A. Multiresolution analysis. In this appendix, first we reintroduce
briefly the definition of the wavelet bases as it is given in reference books [21]. Then
we introduce multidimensional multiresolutions built on hierarchical bases.

Definition A.1 (multiresolution analysis). A multiresolution analysis of L2(R)
corresponds to the existence of a sequence of closed subspaces (Vj)j∈Z such that

1. ∀j, Vj ⊂ Vj+1,
⋂
j∈Z Vj = 0,

⋃
j∈Z Vj is dense in L2(R),

2. (self-similarity in scale) f ∈ Vj ⇐⇒ f(2·) ∈ Vj+1,
3. (self-similarity in time) there exists a function ϕ ∈ V0 such that the set {ϕ(·−
k); k ∈ Z} forms a Riesz basis of V0.
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Such a function ϕ : R → R is called the scaling function of the multiresolution
analysis. The parameter j defines the refinement level. The self-similarity in scale
implies that each space Vj is generated by the set {ϕ(2j · −k); k ∈ Z}. We denote
ϕj,k(x) = ϕ(2jx− k).

The wavelets are defined as generators of a supplementary space Wj :

(35) Vj+1 = Vj ⊕Wj ,

where the sum is direct but not necessarily orthogonal. If the spaces (Wj) are self-
similar in scale, it is possible to define a function ψ : R→ R called wavelet such that
the sets {ψ(2j · −k); k ∈ Z} generate the spaces Wj .

Notice that with no further condition on the function ψ we can take ψ(x) =
ϕ(2x− 1). This choice corresponds to a hierarchical basis.

If we iterate the decomposition of Vj we obtain

(36) Vj = V0

j−1⊕
`=0

W`.

This entails the wavelet decomposition of L2(R):

(37) L2(R) = V0

+∞⊕
`=0

W`.

Hence any function f ∈ L2(R) admits a unique decomposition onto the basis functions
{ϕ0,k, ψj,k; j ≥ 0, k ∈ Z}:

(38) f =
∑
k∈Z

ckϕ0,k +
∑
j≥0

∑
k∈Z

dj,kψj,k.

The multiresolution analyses of L2(Rd) defined by the relation Vj+1 = Vj ⊕Wj

derive from the relation

(39) (Vj+1 ⊗ · · · ⊗ Vj+1)︸ ︷︷ ︸
Vj+1

= (Vj ⊗ · · · ⊗ Vj)︸ ︷︷ ︸
Vj

⊕
⊕

ε∈{0,1}d\{(0,...,0)}

(
Zε1j ⊗ · · · ⊗ Z

εd
j

)
︸ ︷︷ ︸

Wj

with Z0 = V and Z1 = W .
We can use the fact that Vj+1 = W

(0)
j ⊕W

(1)
j with W

(1)
j = 〈{ϕ(2j+1 ·−2k−1)}k∈Z〉

and W
(0)
j = 〈{ϕ(2j+1 · −2k)}k∈Z〉 to write

(40) Wj ⊂
⊕

ε∈{0,1}d

(
W

(ε1)
j ⊗ · · · ⊗W (εd)

j

)
.

If we consider a hierarchical basis, so ψ = ϕ(2 · −1), then W
(1)
j = Wj , hence we are

able to redefine Wj as

(41) Wj =
⊕

ε∈{0,1}d\{(0,...,0)}

(
W

(ε1)
j ⊗ · · · ⊗W (εd)

j

)
.
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Appendix B. Interpolets. The name interpolet—short for interpolating wavelet—
refers both to the scaling function and the wavelet of a multiresolution analysis linked
to the Lagrange interpolation. The scaling function satisfies

(42) ϕ(0) = 1 and ∀k ∈ Z∗, ϕ(k) = 0.

The interpolating wavelets were introduced in [29].
The first interpolet is ϕ2(x) = max(1− |x|, 0), which corresponds to the second-

order interpolation f( 1
2 ) = f(0)+f(1)

2 . This function satisfies the dyadic self-similarity
relationship:

(43) ϕ2

(x
2

)
=

1

2
ϕ2(x+ 1) + ϕ2(x) +

1

2
ϕ2(x− 1).

The fourth-order interpolation

(44) f

(
1

2

)
=
−f(−1) + 9 f(0) + 9 f(1)− f(2)

16

provides a scale function whose self-similarity relation is written

(45) ϕ4

(x
2

)
= − 1

16
ϕ4(x+ 3) +

9

16
ϕ4(x+ 1) + ϕ4(x) +

9

16
ϕ4(x− 1)− 1

16
ϕ4(x− 3).

This is represented in Figure 26. This function is also called the Deslauriers–Dubuc
function [27].

More generally the interpolet of the order 2n is given by the self-similarity relation

(46) ϕ2n

(x
2

)
=
∑
`

c`ϕ2n(x− l),

with the symmetry c−` = c` ∀` and the conditions c0 = 1, c2` = 0 for ` > 0. The
sequence (c2`+1)0≤`≤n−1 verifies a Vandermonde system of equations

(47)


1 1 . . . 1
1 32 . . . (2n− 1)2

...
...

...
...

1 32n−2 . . . (2n− 1)2n−2




c1
c3
...
c2n−1

 =


1
2
0
...
0

 ,

−3 −2 −1 0 1 2 3

−0.2

0.0

0.2
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0.6

0.8

1.0

Fig. 26. The Deslauriers–Dubuc function and its self-similarity relation.
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where the solution is given by

(48) c2`+1 =
1

2

n−1∏
j=0,j 6=`

(2j + 1)2

(2j + 1)2 − (2`+ 1)2
=

n

24n−3

(
2n− 1

n− 1

)
(−1)`

2`+ 1

(
2n− 1

n+ `

)
.

Appendix C. Finite differences and interpolation. The fourth-order
interpolet refines with the classical fourth-order interpolation scheme:

I4 f(x) =
−f(x− 3h) + 9 f(x− h) + 9 f(x+ h)− f(x+ 3h)

16
(49)

= f(x)− 3

8
h4f (4)(x) +O(h6).

The choice of the finite difference schemes is delicate since various instabilities may
appear. The downwind instability manifests itself by the local appearance of bumps
or gaps in the numerical solution. Here are the finite differences used in this paper.
Although probably far from optimal, their combination with the fourth-order inter-
polation proved rather stable. To compute a differentiation, for a right to left wind,
we apply the following finite differences:
• the fifth-order upwind finite difference,

Df(x)

(50)

=
2 f(x+ 3h)− 15 f(x+ h) + 60 f(x+ h)− 20 f(x)− 30 f(x− h) + 3 f(x− 2h)

60h

= f ′(x) +
h5

60
f (6)(x) +O(h6),

• the third-order upwind finite difference,

Df(x) =
−f(x+ 2h) + 6 f(x+ h)− 3 f(x)− 2 f(x− h)

6h
(51)

= f ′(x)− h3

12
f (4)(x) +O(h4),

• a third-order finite difference at the outward boundary of the level (with respect
to the wind),

Df(x) =
−3 f(x+ 2h) + 16 f(x+ h)− 12 f(x)− f(x− 2h)

12h
(52)

= f ′(x)− h3

8
f (4)(x) +O(h4),

• a third-order finite difference at the inward boundary of the refinement level,

Df(x) =
−f(x+ 3h) + 18 f(x+ h)− 8 f(x)− 9 f(x− h)

24h
(53)

= f ′(x)− h3

8
f (4)(x) +O(h4)

• a third-order finite difference at the inward boundary of the refinement level,
using the differentiation computed at the coarser level,
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Df(x) =
5 f(x+ 2h)− 4 f(x)− f(x− 2h)

8h
− 1

2
D2h f(x+ 2h)(54)

= f ′(x)− h3

3
f (4)(x) +O(h4).

This error estimate stands when the differentiation D2h f(x + 2h) is computed with
a fifth-order finite difference.

If one of these schemes is not available because the point is near the boundary
of the refinement level, we apply the next one. If none is available, we keep the
fourth-order interpolation of the differentiation computed at the coarser level. This
interpolation is computed by default at every point.

These error estimates stand for sufficiently smooth functions.

Appendix D. Data structure and C encoding. The encoding of tree struc-
tures usually relies either on hash-tables of keys which refer directly to the positions of
the nodes [11] or on real tree structures built with pointers. In Fortran, these pointers
can be emulated due to tables of indices [60].

We chose to implement the whole fully threaded tree structure in a program writ-
ten in C. The basic element allocated in memory is the node. In dimension d, its
building block is given by

struct Node {
double *tab; /* table of maximally 2d points */

struct Node *prt; /* pointer to the parent node */

struct Node **chd; /* pointers to the children */

struct noeud *vsn[2d]; /* 2d pointers to the neighbors */

signed char frk; /* filiation rank */

unsigned long long flg; /* flag of point current activation */

unsigned long long nwf; /* flag of point next activation */

unsigned long long ldf; /* flag of point previous activation */

unsigned long long chf; /* flag for the children presence */

int ell; /* parameter with different uses */

short int dir; /* direction of the wind */

signed char num[2d]; /* renumbering of the points */

signed char szp; /* number of active points in the node */

};

1

92
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4
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6 7

8

10

11

13

12

2

levels

node addresses

5

4

3

1 1

2 9

10 138

4 5 11 12

76

3

Fig. 27. Accessing the nodes in the tree structure. Left: graph transversal. Right: table of node
addresses ordered level by level.
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An unsigned long long contains 64 bits, and each bit corresponds to one of the
26 = 64 six-dimensional cube points. Hence, it is possible to mark the point activation
inside a node with a single unsigned long long variable.

The multiple nodes of a tree can be accessed through the parent-children connec-
tion (see Figure 27, left). Then a table ordered level by level (Figure 27, right) allows
us to make an Open-MP parallelization.
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