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We address the study of reconnecting instabilities in magnetized plasmas, a highly mul-
tiscale process, using an innovative adaptive scheme based on Adaptive Mesh Refinement 
(AMR) and Multigrid Algorithms. The reduced model we exploit is very sensitive to numer-
ical errors and demands high order solvers which we develop for this purpose. We validate 
our approach with two numerical experiments of physical interest.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Through a global change of the magnetic topology, which locally occurs where spatial and/or temporal gradients of 
macroscopic quantities, such as density current, magnetic field or anisotropic pressure components become important, mag-
netic reconnection [1] emphasizes the multi-scale character usually displayed by plasma instabilities. The fact that the 
nonlinear dynamics of reconnection instabilities typically remains confined in a relatively small region of the macroscopic 
domain makes Adaptive Mesh Refinement (AMR) techniques of integration particularly suited to numerically investigate this 
problem. To this purpose, they have been already used in many previous studies, both in fluid and kinetic frameworks, 
among which we mention Refs. [2–11].

Here we present a new AMR algorithm that integrates a set of reduced magnetohydrodynamics (RMHD) equations (see 
later) by adopting a wavelet-based detection of areas of interest for the mesh refinement [12]. The strong points of this 
algorithm are its high order – three in space while most of the classical AMR schemes are of second order [13–15] – and 
its wavelet-based refinement criterion, allowing a stable automatic refinement of the mesh along the areas of interest. We 
however note that high order AMR Finite Volumes exist which only recently have been made possible by high order Rie-
mann solvers with exact divergence-free condition on unstructured meshes [16,11]. The purpose of the algorithm is to allow 
the study of reconnection at more “realistic” values of the microscopic, non-ideal parameters, which drive reconnection by 
weighing the gradients of the macroscopic quantities that violate the conservation of the magnetic topology in an ideal 
MHD plasma. The smallness of such parameters implies indeed an asymptotically small ratio δ/a between the characteristic 
linear reconnection layer width, δ, inside of which increasingly smaller spatial scales are nonlinearly generated, and the 
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equilibrium magnetic shear length, a. In particular, it always results, both in the classical tearing mode theory and in steady 
state reconnection, that δ/a scales as ∼ εσ , where σ is a positive fractional power of some macroscopic dimensionless 
parameter ε � 1 and usually 1/3 � σ ≤ 1 (see e.g. [17]). Realistic values of the latter, for example in a tokamak where a
is of the order of the macroscopic length scale L0, may well lay in the range 10−11 � ε � 10−6, depending on the regime 
of reconnection considered (e.g. if purely resistive or purely inertia-driven – cf. Table 1 of Ref. [18]). Therefore, even in a 
case in which δ/a ∼ 0.1 (see the numerical experiment Sec. 4.1), a spatial resolution of the inner layer corresponding to 
22×12 = 4 0962 and of just 22×5 = 322 points at the macroscopic scales outside of it, means a reduction of a factor 26 in the 
computational cost with respect to spectral-like codes such as those used for analogous studies of primary reconnection in-
stabilities [17,19–24]. The fact that the AMR scheme refines only when the singularity appears (and coarsens the grid when 
a lower resolution results sufficient), makes the adaptivity even more advantageous since almost 70% of the time the simu-
lation – until the transition to the turbulent nonlinear regime – advances with an accuracy equivalent to a 22×10 = 1 0242

points uniform grid while using less than 155 818 points. The gain with respect to codes based on non-uniform grids which 
do not evolve in time (see Refs. [25–27]) becomes then particularly evident in the low-collision regimes relevant to natural 
and laboratory plasmas, where the smallness of the dissipation length allows a progressive development of short spatial 
scales.

The paper is structured as follows. In Sec. 1.1 we recall some hot, open problems in magnetic reconnection, affordable in 
the framework of an RMHD description, for which AMR codes result particularly suited. In Sec. 2 the RMHD equations are 
introduced (Sec. 2.1) and the AMR algorithm is described (Sec. 2.2–2.4), together with the schemes applied for the integra-
tion. An example of fourth order multi-grid Poisson-solver adapted to a non-uniform mesh is detailed in Sec. 2.5. In Sec. 2.6
the CFL conditions for the integration of the RMHD equations are obtained and discussed in different reconnection regimes. 
In Sec. 3 the physical model behind the equations of Sec. 2.1 is recalled, as well as the notion of reconnection instability and 
the classifications of its different wave-length regimes in terms of the so-called �′ stability parameter (Sec. 3.1). Sec. 3.2
focusses on the dissipation-less limit of the model equations, whose Hamiltonian character and implications, both analytical 
and numerical, are discussed. Sec. 4 is devoted to present a few numerical results performed in regimes of collision-less 
reconnection, already studied in literature, with the aim of both validating the AMR integration scheme and emphasizing 
its relevance and usefulness: two examples of reconnection leading to a nonlinear “turbulent” (Sec. 4.1) and to a “laminar” 
regime (Sec. 4.2) are provided. A conclusion section follows (Sec. 5), in which comments about the parallelization of the 
algorithm are also given.

1.1. Relevance and usefulness of RMHD AMR schemes for some up-to-date reconnection problems

Most numerical studies on magnetic reconnection with AMR schemes are aimed at performing MHD or PIC 3D massive 
simulations, whereas just few exceptions, like Ref. [6], focus on the exploitation of self-adapting grid schemes for the 
integration of RMHD equations. From a numerical point of view, the slab geometry RMHD modeling we are going to focus 
on, is free from the “burden” of the ∇ · B = 0 constraint, since the divergence-free condition on the magnetic field results 
automatically satisfied in this framework where flux and stream functions only are considered (see Sec. 2.1). From the 
physical point of view, the RMHD description does not retain the Hall-MHD effects that are responsible, for example, of the 
transition to a fast reconnection by excitation of whistler waves [28], but is appropriate to describe reconnection instabilities 
in plasma confined by a strong guide field (e.g. in tokamaks). More generally, RMHD results very useful for isolating the 
fundamental physics related to the stability and evolution of large aspect ratio current sheets generated by ideal processes 
or by primary reconnection instabilities. This dynamics is relevant to phenomena like tokamak disruptions, solar flares or 
to the magnetic activity in the magnetosphere. In particular, the missing ingredients to look for, in order to understand and 
model the fast reconnection rates which are suggested by experimental evidence, have been since long time considered the 
kinetic processes that affect the evolution of current sheets and/or the occurrence of secondary reconnection instabilities, 
or, in turbulent environments such as the solar corona, effects related to the stochasticity of the turbulent magnetic field 
fluctuations [29]. A prominent example of kinetic effects expected to speed up the reconnection process is the generation of 
anomalous resistivity, but many other mechanisms may intervene at microscopic scales comparable to kinetic ones. These 
effects are believed to suffice to explain the observed fast reconnection rates, even within fluid descriptions. The recent 
results of Refs. [18,30,31] provide models for when this may occur in an RMHD approximation, thus without the need 
to rely on the transition to the whistler mediated, Hall-reconnection, because of geometrical features of the reconnecting 
current sheet, which are related to the magnitude of its aspect ratio. An example of such microscopic effects occurring at 
kinetic-like scales, and which can be retained in the extended fluid model we consider here, is provided by non-dissipative
reconnection mechanisms due to a non-negligible electron inertia [19,32], first devised in Refs. [33,34] as a likely alternative 
to resistive reconnection. Fast reconnection instabilities associated to the development of “plasmoids” (i.e., magnetic islands) 
on large aspect ratio current sheets have been first numerically evidenced in Ref. [35] by Biskamp, but it is only with the 
work of Ref. [39] that an early theoretical model for fast reconnection has been provided by Shibata and Tanuma, based on 
the generation of plasmoids on the current sheets generated by primary reconnecting modes. This possibility has been then 
supported by several early numerical studies of secondary reconnection processes [38,21,40,41], among which it is due to 
include also the preceding, pioneering works of Refs. [36,37] (despite less stress or direct evidence was put in the latter on 
the reconnection rate enhancement due to secondary reconnecting instabilities). The relationship between fast reconnection 
rates and the occurrence of plasmoids has been later reinterpreted in the light of the “plasmoid instability” scaling [42,43]. 
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This, on the other hand, turns out to be nothing but the scaling of a tearing mode developing on a steady Sweet–Parker 
current sheet, as a previous derivation by Tajima and Shibata had already evidenced [44]. More recently, however, the 
existence of a quasi-singular tearing eigenmode corresponding to an ideal growth rate (γ τ ∼ ε0), and therefore dubbed 
“ideal” tearing, has been shown in the quasi-ideal limit ε → 0 with ε �= 0, first in the resistive regime [30] and then in 
reconnection induced by non-collisional effects [18]. In particular, by relying on a re-scaling argument such as that first 
exploited in Ref. [39], it was pointed out in Ref. [30] how the tearing growth rate becomes an increasing function of the 
current sheet aspect ratio Lcs/acs , once the current sheet length Lcs is fixed and assumed as the macroscopic reference 
scale, much larger than the current sheet width, acs . This has opened a new scenario for the description of the reconnection 
rate increase up to an Alfvénic, “ideal” time scale, during the nonlinear phase of primary tearing-type modes [18,45,46,31], 
since current sheets nonlinearly generated by primary reconnecting modes on a magnetic field with shear length a easily 
achieve aspect ratios Lcs/acs ∼ a/δ 	 1 (see Refs. [17,19] and all the numerical studies about secondary reconnection quoted 
so far). For example, relying on the essence of this re-scaling argument for the reference lengths, a possible theoretical 
interpretation has been given [31] of the sawtooth crash in tokamaks, where fast reconnecting current sheets (yet not 
necessarily on an ideal time scale) can be generated by primary reconnection instabilities, in turn too slow to account, 
alone, for the short time scales of the phenomenon. Evidence of such fast, secondary instabilities in the sawtooth cycle 
had been earlier provided by numerical simulations of Yu et al. [47] and, less explicitly, in Refs. [36,37]. On the other 
hand, the very existence of the “ideal” tearing solution has questioned the possibility to achieve a Sweet–Parker-type steady 
reconnection regime both in resistive [30], viscous-resistive [48] and inertial regimes [18]. This has provided an explanation 
to the instability of a Sweet–Parker current sheet over ideal time scales, earlier evidenced by Biskamp for sufficiently small 
values of the resistivity [35]. At the same time, the unlikeliness of the Sweet–Parker assumption in weakly collisional 
plasmas invalidates, in turn, the hypothesis at the basis of the plasmoid instability scaling, which in recent years has been 
regarded as the most promising paradigm to explain by means of secondary instabilities the fast reconnection rates deduced 
from measurements (for a recent review on secondary reconnecting instabilities observed in simulations and experiments, 
and on the notion of fast reconnection, see Ref. [31]). Even if the quasi-singular “ideal” tearing solution is formally obtained 
in the asymptotic limit ε → 0 with ε �= 0, it is of general, practical relevance to physical phenomena: the values of the 
“ideal” tearing growth rates, which differ in each reconnection regime depending on the nature of the parameter ε involved, 
are achieved with excellent approximation for values of ε encountered in nature or in laboratory [18,30,48]. In particular, 
a quantitative analysis, both theoretical and numerical, of the secondary reconnecting instability occurring on a current 
sheet whose aspect ratio is rapidly increasing has been first provided by Tenerani et al. in Ref. [46] and recently reviewed 
in Ref. [49]. These works, which have given the first numerical evidence that is unlikely to achieve a Sweet–Parker steady 
configuration in a dynamically evolving setting, also show how delicate can be to distinguish in numerical simulations 
the different scalings predicted by asymptotic theories: in this case, for example, only for sufficiently small values of the 
plasma resistivity (corresponding to Lundquist numbers � 106 – see, e.g., Fig. 4 of Ref. [46]) it is possible to separate 
scalings of the current sheet aspect ratio which go like powers 1/2 or 1/3 of the resistivity. But even more challenging, 
from a computational point of view, can be to quantify the growth rates predicted by asymptotic models for secondary 
reconnecting instabilities [31] which estimate, for example, scalings like 1/6 or 1/7, against the 1/3 scalings of the primary 
mode’s growth rate.

Remarkable numerical efforts are therefore required to perform nonlinear simulations capable of testing the correctness 
of the scalings predicted by all these theoretical models, since only for sufficiently small values of ε the numerically mea-
sured scalings can be accurately compared with those predicted by the different asymptotic theories. Only a few recent 
numerical investigations (see e.g. Refs. [46,49,50]) have been performed with this purpose in a parameter range (ε � 10−6) 
which just begins to be significant in this sense, and many open questions still remain to be answered. Examples concern 
the role of flows and of secondary fluid-type instabilities in the disruption of current sheets [20,46]; the role of the relative 
amplitude of the reconnecting magnetic field with respect to the ambient one [31,51]; not to speak of the specific features 
of the current sheets dynamics (amplitude, characteristic spatial and time scales of the current density’s evolution) and the 
way these are related to the onset of secondary reconnecting instabilities. The latter point is crucial to test and investigate 
one of the main implications of the “ideal” tearing model, that is, the possibility to observe turbulent reconnection processes 
[52,29] due to the occurrence of secondary tearing modes on the current sheets generated by ideal, convective motions – 
see in particular the discussion of Ref. [30,53], the extensive analysis of Refs. [46,49] and the more recent comments in 
Refs. [18,31]. These phenomena are of great relevance to turbulent media such as plasmas on the solar corona or in the 
solar wind, as well as in magnetic confinement experiments, an example being provided by drift-kinetic turbulent transport 
in tokamak plasmas. In these large scale turbulent frameworks, the formation of progressively thinner current sheets due 
to the fluid convection in an almost collisionless regime (ε → 0), usually requires to numerically quantify the global energy 
conversion processes, which allow to transfer magnetic energy to thermal heating via magnetic reconnection, in terms of 
statistical models that account for the microscopic stochastic fluctuations of the magnetic field [29,54]. These models, how-
ever, rely on specific hypotheses and scalings about the average behavior and aspect ratio of the single current sheet, which 
are related to, or depend on, the reconnecting models we have discussed so far. Moreover, also the interplay between the 
nonlinear dynamics of tearing instabilities and a background turbulence is an issue of general importance for both coro-
nal plasmas [53] and tokamaks [55]. In the latter, for example, magnetic islands generated by primary tearing and kink 
instabilities in the core plasma may become the seed for neoclassical tearing modes excited by tokamak edge turbulence 
[56].
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It is furthermore worth remarking that, if one wants to investigate the nonlinear dynamics of a primary tearing mode in 
the “ideal” tearing regime, as it has been done in Refs. [45,46,49,50], a huge scale separation L 	 a 	 δ is needed already 
in the linear stage of the simulation, especially in the asymptotic regime ε � 1, since both the equilibrium current sheet 
inverse aspect ratio a/L (with L in fact being one size of the simulation box) and the ratio δ/a, between the width of the 
linear reconnecting layer δ and the equilibrium current sheet a, scale like positive powers of ε.

All those provided above are examples of computationally challenging problems that the AMR algorithm we are going 
to present can help to efficiently address, while aiming to perform numerical studies of reconnection phenomena with 
microscopic parameters sufficiently small to approach realistic values.

2. Adaptive mesh refinement numerical scheme

2.1. Model equations

We have applied the AMR technique to the integration of the following set of RMHD equations (see, e.g., Refs. [17,18]
and references therein for a discussion) for quantities depending on x, y (space) and t (time),

∂ F

∂t
+ [ϕ , F ] = ρ2

s [U , ψ] + η(∇2ψ − ∇2ψeq), (1)

∂U

∂t
+ [ϕ , U ] = [ψ , ∇2ψ] + ν(∇2U − ∇2Ueq), (2)

F ≡ ψ − d2
e ∇2ψ U ≡ ∇2ϕ, (3)

with (ψeq and Ueq) denoting the equilibrium quantities and the Poisson brackets meaning, with standard notation,

[ f , g] ≡ ∇ f × ∇g · ez = ∂x f ∂y g − ∂y f ∂x g. (4)

The physical meaning of the RMHD set will be recalled next, when some applications of the numerical model are discussed 
(Sec. 3). For the sake of future notation we remind that the Poisson brackets relate to the convective derivatives associated 
to the fluid velocity u ≡ ez × ∇ϕ , and to the in-plane magnetic field, B⊥ ≡ ∇ψ × ez , that is

[ϕ, f ] = u · ∇ f , [ψ, f ] = −B⊥ · ∇ f . (5)

The z-components of the vorticity and of the current density are therefore

(∇ × u)z = ∇2ϕ = U , (∇ × B)z = −∇2ψ = J z. (6)

As it is customary, equilibrium quantities are subtracted in the last r.h.s. terms of Eqs. (1)–(2), in order to prevent dissipation 
effects to affect them on time scales numerically comparable to those of the linear instabilities we want to study. This 
problem would be avoided in the asymptotic limit in which both η and ν are sufficiently close to zero and for which 
the more realistic equations, without such a subtraction, could be restored. Then we note that the finite differences AMR 
algorithm developed for Eqs. (1)–(3) can be easily modified to integrate equations with analogous differential operators, such 
as those of the electron-magnetohydrodynamic regime [57,58], and to include further microscopic effects such as ion-Finite 
Larmor Radius (FLR) corrections [24]. Therefore, it can be easily upgraded to include similar equations for further scalar 
fields (see, e.g., Refs. [59,60,55]), possibly dependent from a third space coordinate [61,62].

We have implemented two main cases of the RMHD equations (1), (2), (3) with AMR schemes: the inertial case when 
η = 0 and de �= 0 and the resistive case when η �= 0 and de = 0. Both require high-order numerical integration. While in 
both implementations some care is needed for the elliptic solvers, the first case needs a special attention to be payed to the 
CFL conditions (Sec. 2.6), the second one requires an IMEX scheme [64] in order to solve efficiently the convection terms 
explicitly and the diffusion term implicitly.

In this paper we focus on the inertial case with η = 0 and de �= 0, whose nonlinear description is the most challenging 
from a computational point of view (cf. Sec. 3.2 and 4).

2.2. AMR and finite differences

As the reconnecting instability develops in a very thin layer along the invariant axis, say y, its numerical simulation 
benefits from an adaptive mesh. The grid refines or coarsens itself according to the spatial regularity of the solution, so 
only a small portion of the domain is finely meshed. The points allocated inside a tree structure at dyadic positions are 
recursively split in a fractal way as long as the accuracy of the numerical approximation requires it [65,69]. The AMR solver 
we propose is written in C and allows us to test original computer algorithms and numerical methods.

While most of the existing AMR are based on finite volume methods and cell-centered refinement methods, we propose 
a finite-differences point-centered refinement technique. It provides an easy access to high order numerical schemes: typi-
cally, we are using an upwind third order finite difference for the convections, and fourth order compact finite-differences 
multi-grid solvers for the elliptic equations (of Poisson type). Until the late 2000’s [13,65,14] finite-volume cell-centered 
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Table 1
The Node: basic element of the tree structure.

struct Node {
double tab[16][4]; /* 16 tables, 4 points */
struct Node *prt; /* parent */
struct Node *chd[4]; /* children (0,1,2,3) */
struct Node *ngb[4]; /* neighbors (0,1,2,3) */
int rgf; /* filiation rank */
int ell; /* parameter */
int flg; /* flag indicating which points are active */

};

schemes hardly reached an accuracy beyond the second order. Only recently high order finite-volume schemes based on 
Riemann solvers for MHD equations have been made available [16,11,66–68].

This high order is essential to simulate the RMHD model (1), (2) and (3) where we have to compute ∇φ and ∇ψ with 
a high accuracy in the non-uniform grid. The other possibilities to maintain the order of the discrete operators are either 
to consider a uniform grid with periodic boundary conditions or to express all the differential operators with respect to 
a unique discrete operator. For instance, when solving ∇2u = v , if the discretized operators ∇2

�x , ∇·�x and ∇�x satisfy 
∇2

�x = ∇ ·�x ◦∇�x , as in [65], then ∇�x(∇2
�x)

−1 v is computed at an order equal to the minimum order of ∇·�x and ∇�x . 
Whereas, in our case, the order of ∇�x(∇2

�x)
−1 equals the minimum between the order of ∇2

�x minus one and the order 
of ∇�x .

We numerically solve both the elliptic equations (3) by using fourth-order multigrid methods adapted to the non-uniform
mesh. They follow the pattern detailed in the Sec. 2.5. Aside Eqs. (3) a similar method allows to compute J z = ∇2ψ =
∇2(Id − d2

e ∇2)−1 F directly from F .

2.3. Implementation

The whole implementation is based on a structure named Node presented in Table 1. This structure gathers all the 
physical values of the simulation and connects to the other nodes in order to form the tree structure. The node at the 
top of the tree is called the root. Following the parent-to-children links it gives access to the whole tree. In the domain 
[0, Lx] × [0, L y] with periodic boundary conditions, the four points of the root are located at (0, 0), (Lx/2, 0), (0, L y/2) and 
(Lx/2, L y/2). Each of these points can be refined into four points. For instance the point (0, 0) may be refined. In this case, 
we just allocate a new node which is pointed by chd[0] in the initial root node and which contains the points (0, 0), 
(Lx/4, 0), (0, L y/4) and (Lx/4, L y/4).

Recursively we generate a grid with points located at positions of the type (2− jκ1Lx, 2− jκ2L y) for integers j ≥ 1 and 
0 ≤ κ1, κ2 ≤ 2 j − 1.

At each time step, the grid is modified according to the refinement criterion of Sec. 2.4. Then we create a table which 
lists all the nodes level by level. This table allows to:

1. compute the finite differences level by level starting from the coarsest one. When a point cannot be computed by the 
usual finite difference scheme because a neighboring point is missing, then it is interpolated by the result obtained at 
the coarser level,

2. apply multi-grid schemes (Sec. 2.5),
3. parallelize these operations with OpenMP. We cut and distribute each loop over each level.

Regarding the time scheme, we basically apply the fourth order Runge–Kutta scheme.

2.4. Mesh refinement criterion

At the end of each Runge–Kutta time step, the mesh is refined and coarsened according to a simple regularity indicator. 
For each level j and for each point 2− jκ = (2− jκ1, 2− jκ2) of the level j, we compute the residual of a linear interpolation 
by the coarser level j − 1:

d j,(2�1+1,2�2) = f j,(2�1+1,2�2) − f j,(2�1,2�2) + f j,(2�1+2,2�2)

2
,

the case for d j,(2�1,2�2+1) is obtained by symmetry, and

d j,(2�1+1,2�2+1) = f j,(2�1+1,2�2+1) − f j,(2�1,2�2) + f j,(2�1+2,2�2) + f j,(2�1,2�2+2) + f j,(2�1+2,2�2+2)

4
.

Remark that f j,(2�1,2�2) = f j−1,(�1,�2) so there is no residual at this point.
Then we consider a cell-centered estimator around 2− jκ = 2− j(2�1 + 1, 2�2 + 1) for all �1 and �2:
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w2
jκ =

∑
e1∈{−1,0,1}

∑
e2∈{−1,0,1}

d2
j(κ1+e1,κ2+e2). (7)

Hence for each ( j, κ) such that κi = 2�i + 1, we know the weight w jκ associated to the point ( j, κ). This point is the 
center of a cell formed by the node that contains it, and its three – right, upper and upper-right – neighboring nodes. 
For the thresholding the weigh w jκ is compared to the quantity 2α jε which depends on the given refinement parameters 
α and ε and on the refinement level j. The parameter α between −2 and +∞ modules the approximation space: if 
α = dim/p − s with dim the space dimension (here dim = 2) then this thresholding minimizes the Bs

p(Lp)-norm of the error 
(i.e. the Lp -norm of its s-th derivative) [63]. Hence α = 1 corresponds to an L2-thresholding of the solution, and α = 0 to 
an L∞-thresholding.

Then we apply the following refinement and prune algorithm:

• (refine 1) if w jκ > 2α jε , the children of the nine points around ( j, κ) are activated (created if they do not exist, pre-
served if they do),

• if w jκ > 2α jε/2, then the cell is preserved, the same if it is the parent of a preserved node,
• (refine 2) the neighboring nodes of the activated nodes up to now are activated on two ranks, this implies the graduation 

of the tree,
• (prune) at this stage, if a node is not preserved then it is removed,
• in addition, for some of the experiments, we impose a maximum limit to the refinement level: j ≤ jlim .

The larger α, the closer the grid will be to a uniform grid. The values of F and U of the newly created points are interpolated 
from the points of the coarser level thanks to a fourth-order interpolation scheme.

2.5. Multigrid Collatz Poisson solver

Here we detail a multi-grid Collatz solver applied to the AMR framework. The Collatz method is a fourth order compact 
finite difference method for solving the Poisson equation ∇2u = v . In the 80’s it was applied in the multi-grid context [70,
71]. Then, during the years 2000 and 2010, it was successfully implemented in two and three dimensions for non-uniform 
grids and for nested grids data structure in the Adaptive Mesh Refinement and Finite Volume frameworks [72–74] but not 
for Fully Threaded Tree structures as presented here.

In dimension two it is given by:

1

6h2

⎡
⎣ 1 4 1

4 −20 4
1 4 1

⎤
⎦ u = 1

12

⎡
⎣ 0 1 0

1 8 1
0 1 0

⎤
⎦ v (8)

for a uniform discretization in x and y with space step h: xi1 = i1h, yi2 = i2h. The above two dimensional notation for the 
stencils allows to visualize the application of multi-diagonal matrices so Eq. (8) corresponds to:

1

6h
(−20 ui1,i2 + 4 ui1+1,i2 + 4 ui1−1,i2 + 4 ui1,i2+1 + 4 ui1,i2−1 + ui1+1,i2+1 + ui1−1,i2+1 + ui1+1,i2−1 + ui1−1,i2−1)

= 1

12
(8 vi1,i2 + vi1+1,i2 + vi1−1,i2 + vi1,i2+1 + vi1,i2−1)

for all i1, i2.
We apply a data structure and an algorithm similar to [65] where the author restrains to the classical second order Pois-

son solver. Rather than applying the “Full Approximation Scheme” which consists in starting the approximation algorithm 
at the coarser levels before doing the V-cycles, we initiate the algorithm in a “Residual-based” way with the previous time 
step result as a first guess.

In the following, we assume the domain [−L/2, L/2]2 to be paved with different continuous domains � j such that 
� j+1 ⊂ � j . For j ≥ 0, the domain � j is discretized with a space step h j = 2− j−1 L. The structure described in Table 1
generates such a mesh. We also consider the boundary ∂� j of the domain � j as composed of the points with missing 
direct neighboring points in � j in one of the four directions or in diagonal. We note �̊ j = � j \ ∂� j (see Fig. 1 for an 
illustration).

We will solve Eq. (8) on all points of �̊ j while the points of ∂� j will be interpolated from � j−1 providing boundary 
conditions for � j .

The resulting algorithm is of multigrid type with values of v known at the points of the mesh ∪ jmax
j=0 � j and values of u

to be determined at these points.
In this algorithm, the residual is computed at the finest level: if x ∈ �̊ j and x /∈ �̊ j+1 then the residual at x = (i1h j, i2h j)

is
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Fig. 1. Example of domain � j divided between its boundary ∂� j and its interior �̊ j .

r(x) = 1

12

⎡
⎣ 0 1 0

1 8 1
0 1 0

⎤
⎦ vi1,i2 − 1

6h2
j

⎡
⎣ 1 4 1

4 −20 4
1 4 1

⎤
⎦ ui1,i2 .

At the end of the Gauss–Seidel iterations at level j (two iterations in our code), the residual r(x) is restricted to provide 
the residual at point x and level j − 1.

Conversely, during the prolongation process, the boundary ∂� j is interpolated from level j − 1. This interpolation has 
to be sixth order accurate because the Dirichlet boundary conditions require a C6 continuity to ensure the fourth order 
accuracy of the Collatz solver (Eq. (8)) on � j .

Nevertheless the restriction of the residual and of the prolongation of the “residual solution” are the classical second 
order multigrid restriction and prolongation used in [71]: 1

4 [1 2 1] and 1
2 [1 2 1] respectively. The whole algorithm is 

detailed in Appendix A.
It is possible to extend this scheme to solve(

α Id − β∇2
)

u = v + ∇2 w (9)

where αβ ≥ 0, α �= 0 or β �= 0, v and w are known and u is the unknown function with the fourth order accuracy approxi-
mation: ⎛

⎝ α

12

⎡
⎣ 0 1 0

1 8 1
0 1 0

⎤
⎦ − β

6h2

⎡
⎣ 1 4 1

4 −20 4
1 4 1

⎤
⎦

⎞
⎠ u (10)

= 1

12

⎡
⎣ 0 1 0

1 8 1
0 1 0

⎤
⎦ v + 1

6h2

⎡
⎣ 1 4 1

4 −20 4
1 4 1

⎤
⎦ w. (11)

This general formulation may be specialized to

• α = 0, β = −1, w = 0 for the Poisson equation ∇2u = v ,
• α = 1, β = ν�t , w = 0 for the implicit Euler integration of the Heat Equation ∂t u = ν∇2u, useful in the resistive case,
• α = 1, β = d2

e , v = 0 and w = −F for the computation of J z given by the equation (Id − d2
e ∇2) J z = −∇2 F .

The convergence of this kind of multi-grid algorithms is studied in [71]. It allows an exponential convergence to the 
solution with a rate independent of the finest space step h. From our experience, the shape of the domains � j may have 
an influence on the convergence rate only in the most pathological cases. Most importantly, this solver guarantees a fourth 
order accuracy as confirmed by Fig. 2 left.

2.6. CFL condition for the RMHD equations

In the case η �= 0, the viscous term has to be treated implicitly, otherwise a penalizing �t ≤ �x2 stability condition 
would appear. Then, the choice of a particular IMEX scheme (Implicit–Explicit scheme [64]) largely influences the stability 
conditions.

In order to derive a proper CFL condition adapted to the RMHD equations (1), (2) and (3) for η = ν = 0, we apply a 
routine von Neumann stability analysis [75] detailed in Appendix B.

From this analysis we derive the stability condition:
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�t ≤ C
�x

‖∇ϕ‖∞ + ρ2
s �x2

�x2 + d2
e
‖∇U‖∞ +

(
2ρ2

s + �x2

�x2 + d2
e

)1/2

‖∇F‖∞

, (12)

where ‖ · ‖∞ = ‖ | · |�1‖L∞(�) .
In the case ρs �= 0 and de = 0 (which is however not of interest to the reconnection problems we consider here, which 

require either de �= 0 or η �= 0), we obtain the condition

�t ≤ C
�x2

√
2ρs‖∇F‖∞

,

which is particularly restrictive.
In the case ρs = 0 and de �= 0, we obtain

�t ≤ C
(�x2 + d2

e )
1/2 �x

‖∇ϕ‖∞ (�x2 + d2
e )

1/2 + ‖∇F‖∞ �x
, (13)

where ‖ · ‖∞ = ‖ | · |�1‖L∞(�) . This inequality is implied by the simpler condition

�t ≤ C
de �x

‖∇ϕ‖∞ de + ‖∇F‖∞ �x
. (14)

The CFL condition provided by Eqs. (13)–(14) allows much larger time steps at the beginning of the numerical experiment 
than later, when the singularity is developed. Having implemented it at each time step allows a substantial economy in the 
computation and also discards the numerical instabilities which appear when using any unfit time step.

We finally note that, by using Eqs. (5) and (B.1), Eq. (13) can be rewritten in terms of the vector components as

�t ≤ C
(�x2 + d2

e )
1/2 �x

‖u‖∞ (�x2 + d2
e )

1/2 + ‖B⊥ − d2
e∇2 B⊥‖∞ �x

. (15)

This inequality is in turn implied by the simpler condition:

�t ≤ C
de �x

‖u‖∞ de + ‖B⊥‖∞ �x
. (16)

3. Physical model for reconnection instabilities

We recall that Eqs. (1)–(3) describe the dynamics in the Alfvénic frequency range of an MHD plasma in a strong guide 
magnetic field, whose dominant, uniform component is oriented along z. Eq. (1) corresponds to the z-component of the 
magnetic induction equation obtained from the generalized Ohm’s law in which resistivity (η), electron inertia effects (re-
lated to the ion skin depth de) and electron temperature effects (related to the ion-sound Larmor radius ρs) have been 
retained; Eq. (2) is the z-component of the plasma vorticity equation, which includes ion–ion viscosity (ν). As already men-
tioned (Sec. 2.1) ϕ and ψ are the stream functions respectively related to the fluid E × B-drift plasma velocity, u = ez ×∇ϕ , 
and to the in-plane magnetic field, B⊥ = ∇ψ × ez; they are in turn related by Eqs. (3) to the z-component of the electron 
canonical momentum F and to the z-component of the fluid vorticity U . Further details about the derivation and meaning 
of the equations can be found for example in Refs. [18,57]. Eqs. (1)–(3) are written in non-dimensional units, with density 
and magnetic field expressed in units of their reference values n0 and B0, lengths normalized to the equilibrium shear 
length a, and velocities to the Alfvén velocity c A ≡ B0/

√
4πn0mi , with mi the ion mass. The parameters η, de , ρs and ν are 

therefore dimensionless with respect to their appropriate normalizations.
Note that resistive reconnection, especially in space-plasma literature, often refers to the dimensionless Lundquist num-

ber S ≡ c Aa/ηm , defined as the inverse of the magnetic diffusivity ηm , normalized to the characteristic Alfvén time measured 
with respect to the scale a. Because of the normalization of Eq. (1) the dimensionless resistivity η coincides with the so-
normalized magnetic diffusivity, so that it can be read η ≡ S−1.

Concerning the normalization of lengths we finally recall that, due to the separation of scales which can be encountered 
in different reconnection problems, it is generally important to distinguish between Lx , L y (dimensions of the simulation 
box), acs and Lcs (width and length, respectively, of a generic current sheet). We name the latter respectively a and L when 
referred to the equilibrium quantities. Appropriate rescaling arguments should be therefore considered when applying the 
tearing mode theory to a generic current sheet of aspect ratio Lcs/acs , such as that generated by primary instabilities.

3.1. Reconnection instability and �′ parameter

By choosing a magnetic equilibrium profile ψeq(x), sheared with respect to the x variable and not dependent on y, we are 
interested in studying reconnection instabilities which develop by exciting the perturbations of the kind f (x)ei(ky y−ωt)eγ t , 
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with ky , ω, γ real parameters, the latter thus expressing the growth rate of the tearing-type instability. This instability 
induces the formation of the characteristic magnetic island structures, linearly developing inside a reconnection layer of 
characteristic width δ, centered around the resonant position. For a locally monotone ψ ′

eq(x), the latter corresponds to the 
value of x where ψ ′

eq(x) = 0. The study of the reconnection instabilities leads to the eigenvalue problem related to the 
linearized Eqs. (1)–(3), which is solved as a boundary layer problem [76]: an outer solution ψout , which depends only on 
the shape of ψeq(x) and on the wave-number ky , is obtained in the “outer” region (i.e. for x/a ∼ 1), in which the ideal 
MHD limit is assumed (de = ρs = η = ν = 0); ψout is then exploited as “boundary condition” for the inner solution, to 
which it is matched, and that is sought for the system in an inner layer, close x → 0, where non-ideal MHD effects result 
non-negligible. Depending on the shape of the equilibrium profile ψeq(x/a), which varies over the characteristic length 
a, different wavenumbers ky may result unstable. The instability condition can be related to the so-called �′ parameter, 
formally defined [76] as the derivative of the logarithmic jump of the solution ψout as it approaches the inner layer,

�′ ≡ ψ ′
out(0+) − ψ ′

out(0−)

ψout(0)
. (17)

This parameter, which can be shown (see, e.g., Ref. [1], Sec. 4.1) to be proportional to the amount of free magnetic energy 
that can be transferred from the ideal region into the reconnection layer during the linear growth of the resistive instability, 
must be positive in order for a given tearing-type mode (i.e. a fixed ky ) to be unstable. This condition fixes, for an unsta-
ble mode with m = ky L/(2π), the maximum number of oscillations mmax on a current sheet with length L. This will be 
discussed in the simulation examples to be considered next.

Furthermore, depending on the mechanism violating the ideal Ohm’s law, here expressed by the generic parameter ε, it 
can be shown that the relative magnitude of �′(kya)δ(ε) with respect to unity identifies different regimes of the reconnec-
tion instabilities, where the growth rate γ and the layer width δ take different scalings with respect to ε (see [77,78] for 
the resistive regime and [79,32] for the collisionless one). Following the standard terminology we name these three regimes 
“small-�′” (SD), for �′δ � 1, “large-�′” (LD), for �′δ 	 1, and “fastest growing mode”, for �′δ � 1. The latter corresponds 
to the maximally growing wave-number kM (at fixed ε) in a continuum wave-length spectrum of unstable modes. It can 
be shown [18] that both the wave-number and the growth rate of the fastest growing mode are, in general, function of ε
only, kM(ε) and γM(ε). In a continuum wave-length spectrum the asymptotic limits of the LD and SD regimes correspond 
respectively to ky � kM(ε) and ky 	 kM(ε) [80]. Recent discussions on the transition among the three regimes can be found 
in Refs. [18,31,80].

3.2. Hamiltonian limit

The low-collision regime which characterizes most astrophysical and fusion plasmas corresponds to a parameter range 
in which η and ν are often much smaller than both d2

e and ρ2
s . Even if this does not generally imply that the effects of 

η and ν on the reconnection rate and on the nonlinear dynamics can be totally neglected (see [18]), in the numerical 
applications which follow we focus on the completely collisionless, inviscid limit (η = 0 and ν = 0) of Eqs. (1)–(3), in which 
reconnection is possible whenever de �= 0. This limit is particularly interesting because, on the one hand, the stiffness of the 
corresponding equations makes it particularly challenging from a computational point of view, and therefore compelling to 
test the AMR code. On the other hand, its Hamiltonian character implies the existence of an infinity of integral constants 
of motion besides the total energy [81,82] and also grants the Lagrangian conservation of local quantities dragged by the 
fluid flow u [25,81]. These can be used to check the accuracy and conservations of the algorithm during the numerical 
integration.

We recall in particular that the conservation of the total energy follows from Eqs. (1)–(3) at η = ν = 0:

E ≡
∫ ∫ (

|∇ψ |2 + d2
e |∇2ψ |2 + |∇ϕ|2 + ρ2

s |∇2ϕ|2
)

dx dy. (18)

Then, for ρs �= 0 [81,25], the following two families of Casimir’s integrals commute with the Hamiltonian,

C+ ≡
∫ ∫

f+ (F + deρsU ) dx dy, C− ≡
∫ ∫

f− (F − deρsU ) dx dy, (19)

with f+ and f− arbitrary functions. In this regime Eqs. (1)–(2) can be manipulated to express the following two Lagrangian 
invariances,

d+
dt

(F + deρsU ) = 0,
d−
dt

(F − deρsU ) = 0, (20)

with respect to the flows

d± ≡ ∂ + [ϕ ± (ρs/de)ψ, · ]. (21)

dt ∂t
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The “cold electron” ρs = 0 case is instead singular with respect to the corresponding limit of Eqs. (19)–(21). The two 
families of Casimir’s invariants are replaced by

C1 ≡
∫ ∫

f1 (F ) dx dy, C2 ≡
∫ ∫

U f2 (F ) dx dy, (22)

with f1 and f2 arbitrary functions. In this case only F results a Lagrangian invariant advected by the flow generated by ϕ ,

d

dt
F = 0, (23)

where d/dt ≡ ∂t + [ϕ, · ].

3.3. Linear analysis in the Hamiltonian limit

In the RMHD Hamiltonian limit, the stable, normal modes propagating in a homogeneous plasma with a wave vector 
of modulus k having a component k|| along a uniform, in-plane magnetic field component, correspond to the dispersive, 
kinetic-Alfvén waves. Their dispersion relation is

ω2 = k2||
1 + k2ρ2

s

1 + k2d2
e

. (24)

In the “cold” ρs = 0 limit they display the same kind of stiffness of whistler waves in 2D incompressible EMHD (see [57] for 
a comparison of the 2D RMHD and EMHD models), having an identical dispersion relation but for the substitution k2|| → k||k. 
In the “warm” ρs �= 0 limit, they describe fast dispersive waves – see e.g. [83] for a recent discussion about these modes 
and for their implications for implicit solvers of the RMHD set.

As discussed in Sec. 3.1, the unstable tearing mode we are interested in develops instead when the in-plane component 
of the magnetic field is sheared, with a locally linear dependence near a singular position. As already recalled in the same 
Section, the corresponding eigenvalue problem can be analytically solved by relying on the asymptotic analysis, here valid 
when de/a → 0.

In the “cold” ρs = 0 limit the linear dispersion relation so obtained assumes, by restoring dimensional quantities, the 
following implicit form [32,19],

γ τA

ka
= − π

a�′(ka)

(
γ τAa

4kd2
e

) 3
2 �((Q − 1)/4)

�((Q + 5)/4)
, Q ≡ γ τAa

kd2
e

, (25)

with τA ≡ c A/a being the reference Alfvén time and � noting Euler’s Gamma-function. The scaling in the different �′
regimes can be estimated from this expression (see Appendix C of Ref. [31] for a brief review and discussion of this tech-
nique).

In particular, the scalings of the maximally growing mode satisfying �′(kMa)δ(kM , de) � 1 in the asymptotic limit of a 
sufficiently large aspect ratio current sheet, generally depend on the choice of the equilibrium profile. For the equilibrium 
choice considered in the following numerical examples (cf. Eq. (36) next) these scalings would read [18]:

kMa ∼
(

de

a

) 1
2

, γMτA �
(

de

a

) 3
2

,
δM

a
∼ de

a
. (26)

When applying Eq. (25) to a continuum wave-length spectrum, the LD (�′δ 	 1) and SD (�′δ � 1) conditions would imply 
a restriction to the wavelength ranges kya � (de/a)1/2 and kya 	 (de/a)1/2 respectively. In these regimes Eq. (25) can be 
approximated as [17,79]

γLDτA � kde, γS DτA �
(

�(1/4)

2π�(3/4)

)2 kd3
e

a2
(�′a)2. (27)

The respective width of the current layers generated by the reconnecting instability during the linear phase are estimated 
to be [17,79]

δLD

a
∼ de

a
,

δS D

a
∼ �′de

a
. (28)

For ρs �= 0, instead, the analytical expression replacing (25) in the “warm” Hamiltonian limit is much more cumbersome 
[84]. Moreover, its simplified rewriting in some restricted wave-length ranges [32] gives estimations of the dispersion re-
lations, whose validity in the parameter space is a priori not so easily recognizable [24]. Therefore, in this “warm” case, 
as well as, more generally, when the value of de/a is not sufficiently small, both for null and non-null values of ρs , it is 
better to rely on a numerical solution of the eigenvalue problem in order to compute the growth rates of the reconnecting 
instabilities.
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To this purpose, we numerically compute the growth rate of each unstable mode of the type f (x)eikyeγ t in a similar 
way as in the CFL analysis Appendix B by considering:

ψ(x, y) = ψeq(x) + ψ̃(x)eikyeγ t, (29)

F (x, y) = Feq(x) + f̃ (x)eikyeγ t, (30)

ϕ(x, y) = ϕ̃(x)eikyeγ t, (31)

U (x, y) = ũ(x)eikyeγ t, (32)

and by solving the eigen-value problem below (with normalized quantities as in Eqs. (1)–(3))

γ 2 ϕ̃ = −k2 A−1 B C−1 D ϕ̃ (33)

with

A = ∂2
x − k2, B = ψ ′

eq∂
2
x − k2ψ ′

eq − ψ ′′′
eq, (34)

C = 1 + k2d2
e − d2

e ∂
2
x , D = F ′

eq + ρ2
s k2ψ ′

eq − ρ2
s ψ ′

eq∂
2
x , (35)

while using a non-regular grid on the x-axis in order to refine the approximation near zero at the singularity.

4. Numerical experiments in the Hamiltonian limit

In order to test the performances of the code we have run numerical simulations of collision-less reconnecting instabil-
ities on a square simulation box of dimension [−Lx/2, Lx/2] × [−L y/2, L y/2], with a = 0.5 and Lx = L y = 2π or a = 1 and 
Lx = L y = 4π , for different values of the ratio ρs/de and for the equilibrium profile [85]

ψeq(x) = −1

2

1

cosh2(x/a)
, �′a = 2

⎛
⎜⎝−(kya)4 + 2(kya)2 + 15

(kya)2
√

4 + (kya)2

⎞
⎟⎠ . (36)

This has been chosen in place of the more customary Harris-pinch profile [86], B0
y(x) = B0

y tanh(x/a), whose instability 
parameter is �′a = 2(1/(kya) − kya), because of the numerical constraint given by the periodic boundary conditions. Al-
though equilibrium (36) formally has three null lines, respectively at x = 0 and at x = ±∞, only the former is of practical 
relevance due to the vanishing current density at x = ±∞. This profile has been much exploited for numerical studies of 
“fast” reconnection in the LD regime due to the large values of the �′ parameter that can be achieved with relatively small 
values of the ratio L y/a.

The condition �′a > 0 for the equilibrium described by Eqs. (36) corresponds to unstable modes satisfying 0 < kya <
√

5. 
This condition translates on a constraint about the number of oscillations m ≡ ky L y/(2π) of the modes which can be 
destabilized in a simulation box with finite size L y , which reads

m ≤ int

(√
5

2π
L y

)
. (37)

Finally note that, by construction, the aspect ratio of the equilibrium current sheet subject to the first reconnection 
process is L/a = L y/a. In the following the adjective “classical” is meant for usual tearing-type instabilities with a as macro-
scopic length, in contraposition to configurations in which L/a 	 1 and the macroscopic reference length is L = L y (case, 
for instance, of the “ideal” tearing, of the plasmoid instability or of Sweet–Parker reconnection).

In Sec. 4.1 we discuss an example of simulation in the “cold” regime (ρs = 0), which emphasizes the usefulness of the 
AMR algorithm to follow the spatial filamentation and turbulent dynamics typical of this case, and highlights the influence 
of the latter in the loss of integral conservations (e.g., energy) and in the breaking of spatial symmetries of the linear 
eigenfunctions. The choice of the non-ideal parameters is the same as previous simulations available in literature, to which 
the result will be compared, although mainly from a qualitative point of view: due to a peculiar choice of the initialization 
of the perturbation, the example here presented aims indeed to highlight some delicate issues about the interpretation of 
the appearance of “plasmoids” during the nonlinear stage of a primary reconnecting mode.

In Sec. 4.2 we provide an example of linear validation of the code in the warm ρs �= 0 regime, by comparing some growth 
rates, measured after integration of the RMHD set, with the values reported in previous studies available in literature, as 
well as with the values obtained by numerical solution of the eigenvalue problem (Sec. 3.3). We then discuss an example of 
nonlinear simulation in which the ratio ρs/de > 1 makes the turbulent dynamics be replaced by the laminar evolution first 
evidenced in Refs. [25,27]. The numerical results here presented for this explorative simulation indicate however that, also 
in the late nonlinear stage of this warm regime, fluid instabilities, which at the best of the knowledge of the authors have 
never been evidenced before in this parameter range, may develop.
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Fig. 2. Test of convergence on non-uniform grids by means of accuracy doubling. The error is represented in log-scale amplitude. L1 , L2 and Linf label 
the errors measured with respect to the norms ‖ · ‖L1 , ‖ · ‖L2 and ‖ · ‖L∞ norms, and “4th order” and “3rd order” mean the functions f (h) = C h4 and 
f (h) = C h3 respectively. Left: test of the AMR Collatz solver. Right: test of the whole scheme, error on F (t = 10).

4.1. Test case (1): “classical” tearing with ρs = 0

As a first benchmark test we have run simulations using the equilibrium of Eq. (36) for de = 0.3a and ρs = 0. This 
is the case studied in Ref. [20], in which the vorticity and current sheets, developed along the neutral line by the primary 
reconnecting mode, become rapidly unstable to secondary fluid instabilities, especially of KH-type. This makes the numerical 
simulation of this nonlinear dynamics particularly challenging. The large value of de/a also implies relatively large growth 
rates, approaching values comparable to the Alfvénic time scale τ−1

A .
Regarding the AMR parameters (cf. Sec. 2.4) the refinement criterion

wλ ≥ 2α j−1ε (38)

is here applied with α = 1.3 and ε = 1.125e−5 (empirically defined) to both the functions F and U through the value 
wλ = ∑

κ∈{−1,0,1}2 vλ+κ (cf. Eq. (7)), where

vλ =
√

dλ(F )2 + dλ(U )2 (39)

and dλ is the residual of the second order interpolation performed from the coarser level (actual value at level j minus 
value interpolated from level j − 1). Moreover we take jlim = 12. This choice of α and ε allows to run this experiment for 
t ∈ [0, 30] in a few hours on an 8-core computer node.

First we validate the fourth order accuracy for the AMR Poisson solver (Sec. 2.5) for Eqs. (3) and the third order accuracy 
of the whole scheme for Eqs. (1), (2). The advection terms in Eqs. (1), (2) are computed with an upwind third order scheme.

For the test of the Poisson solver, we solve ∇2u = sin(6πx) sin(6π y) on a grid containing three different levels of 
refinement and we double the accuracy six times to measure the convergence (Fig. 2 left). For the whole scheme, we run 
the “classical” tearing test case in the linear regime of the growth of reconnection, we stop at t = 10 and we compute the 
error on F (t = 10) by comparing to a reference solution on the finest mesh containing four different levels of refinement. 
We sequentially double mesh sizes and observe the third order of convergence (Fig. 2 right).

The value of the non-ideal parameter ε = de/a allowing reconnection has been chosen for comparison with the sim-
ulations run in Refs. [20,87]. However, the different choice of the box dimensions, Lx = 2L y = 4πa in the latter case, in 
contrast to the Lx = L y = 4πa case considered here, implies important differences on the number of magnetic islands (i.e. 
the mode number m) generated by the most unstable mode: for L y = 2πa, just the modes m = 1 and m = 2 result unstable, 
respectively corresponding to kya = 1 and kya = 2; for the case L y = 4πa, instead, the modes m = 1, 2, 3 and 4 are unstable, 
respectively corresponding to kya = 0.5, 1, 1.5 and 2.

Moreover, the relatively large value chosen for de/a makes the linear analytical estimation (25) not accurate (cf. Fig. 1 of 
Ref. [58]), and therefore also Eqs. (26)–(28) result inappropriate.

The values of the growth rate γeig of the unstable wave-vectors kya, obtained by numerical solution of the eigenvalue 
problem as described at the end of Sec. 3.3, are compared in Table 2, in which they are written together with the corre-
sponding values of the normalized �′ parameter.

As shown in Fig. 3, where the growth of the Fourier transform of the unstable modes (averaged with respect to the 
x-variable) is represented in time, the simulation we have run has been initialized by perturbing the equilibrium of Eq. (36)
with a function of the kind

ψ̃(x, y) = ε cos(y/2), (40)
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Table 2
Growth rates and values of the �′ parameter as a function of 
the normalized wave-vector kya, for the mode numbers unstable 
when L y = 2πa and L y = 4πa respectively.

m for L y = 2πa – 1 − 2
m for L y = 4πa 1 2 3 4
kya 0.5 1 1.5 2
�′(kya) 59.90 14.31 2.20 1.23
γeig (kya)τA 0.103 0.125 0.070 0.008

Fig. 3. Time evolution for t ≤ 28.2 of the log-scale amplitude, averaged over the x coordinate, of the first three ky -modes corresponding to m = 1, 2 and 3
respectively (equilibrium quantities have log-scale amplitude 0). Simulation parameters: a = 0.5, de = 0.3a, Lx = L y = 2π .

thus exciting only the m = 1 mode with an amplitude ε = 10−5. This mode is responsible of the growth of the first magnetic 
island, well visible in Fig. 4 since time t = 25τA . As first evidenced in Ref. [20] and re-discussed in Ref. [57], the nonlinear 
dynamics of the current layers is driven in this regime by the evolution of the vorticity sheets, which advect the field J z: 
this induces the appearance of secondary fluid instabilities both of Kelvin–Helmholtz-type, which start affecting the current 
sheets inside the island since t = 26.6, and of “interchange” type (i.e., Rayleigh–Taylor/Richtmyer–Meshkov instabilities), 
related to the characteristic mushroom patterns visible since t = 26.6 and to the subsequent perturbations on their surface, 
shown since t = 27.2 (Fig. 5). This dynamics rapidly leads to a turbulent regime inside the magnetic island, which is 
associated to the generation of increasingly smaller spatial scales, as evidenced by the level of refinement necessary to 
follow this dynamics, which has been quantified in Figs. 4–5 (second row of each figure) and in Fig. 6. It is however 
worth remarking that, even before the onset of turbulence, the increase of the grid refinement is required by the spatial 
filamentation, which is an intrinsic feature of this Hamiltonian system: this is exemplified by the progressive thinning of 
the current sheet J z along the neutral line [17,19], whose evolution in time at y = 3L y/8 = 3π/4 is shown in Fig. 7.

The nonlinear cascade towards small spatial scales associated to this turbulent regime leads to a rapid deterioration of the 
integral conservations by numerical dissipation, which can be delayed only at the price of an enormous computational effort 
– we recall indeed that the increase in the grid refinement couples with more severe CFL conditions, as it is expressed by 
Eqs. (13)–(14): having fixed, in this numerical example, the maximum refinement to hlim = 2−12L, the total energy, perfectly 
conserved according to Eq. (18) until t � 27, looses about 14% of its initial value by time t = 30 and drops down to 65% of 
its initial value by time t = 50 (see Fig. 8).

Finally note that the AMR algorithm we have discussed allows to preserve the spatial symmetry of the fields also in the 
nonlinear stage, in principle as long as the grid refinement can accurately describe the generation of small spatial scales: 
during the nonlinear stage, as soon as the current sheets moving inside the magnetic island from the two X-points “collide” 
and bend (Fig. 4, at t = 26.6), the distinct x ↔ −x and y ↔ −y symmetry invariances of the linear eigenmodes merge into 
a central symmetry by rotation around the magnetic island’s O -point (i.e., an invariance with respect to (x, y) ↔ (−x, −y)

transformations). This central symmetry is however lost as soon as numerical errors at grid scale cumulate (cf. Fig. 1 of 
Ref. [20]). In the simulation we have presented we see that it is only when the grid refinement becomes appreciably 
insufficient to grant energy conservation (cf. Fig. 8 for t � 30) that the central symmetry is broken (Fig. 5, t = 32.4).

We conclude this section with a brief comparison with the simulations of Refs. [20,87] and a comment about the par-
ticular choice of initialization expressed by Eq. (40). We first note that the time scales of the simulations of Refs. [20,87]
and those here discussed are appreciably different mainly because of differences due to initialization of the perturbations, 
which implies quite different transient times (also because of the role played by the spectral-like filters, used in the sim-
ulations of Refs. [20,87] to prevent aliasing problems). Then, as evidenced in Table 2, the m = 1 mode excited in Ref. [20]
corresponds to kya = 1, whereas, in the simulations here reported, it corresponds to kya = 0.5. However, while the growth 
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Fig. 4. First row: contour plots of the field F at times t = 0, t = 25, t = 26.6. Second row: the adaptive grid at the same times, with colors corresponding to 
the refinement h = 2− j L for 4 ≤ j ≤ 12. Simulation parameters: a = 0.5, de = 0.3a, Lx = L y = 2π . (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 5. Same as Fig. 4 but for times t = 27.2, t = 28.4, t = 32.4. First row: F . Second row: the adaptive grid.

rates of kya = 1 and kya = 0.5 are comparable, the m = 2 mode has a negligible growth rate in the case studied in Ref. [20], 
whereas in the simulations shown in Figs. 4–5 is dominant and is responsible of the appearance of the second island at the 
edges of the simulation box (well visible at t = 28.4 in Fig. 5). Therefore, as evidenced by the Fourier spectrum displayed 
in Fig. 3, this second island can not be interpreted as related to a secondary reconnecting instability of the kind discussed 
in Refs. [18,46,31,21] or in the framework of the plasmoid instability scenario [42,40,41], since its appearance is not due 
to the generation, by the primary tearing mode, of a new current sheet profile on which new modes can be destabilized: 
the particular choice of the perturbation (40) makes the m = 2 mode grow even faster than the initially excited m = 1
perturbation on this equilibrium profile. However, as appears evident from Fig. 3, the initial relative amplitude of the m = 1
and m = 2 modes is such that the m = 1 mode saturates and reaches a macroscopic size while the m = 2 mode still behaves 
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Fig. 6. Total number of points in the adaptive grid as a function of time for the simulation of Figs. 3–5.

Fig. 7. Cut at y = 3L y/8 of the current density J z for the beginning of the experiment (t ≤ 28.2) for −Lx/10 ≤ x ≤ Lx/10. The blue color is for t close 
to 0 and the red one for t close to 28.2 (as time t advances, the J z profile in x peaks at the middle of the domain). Simulation case of Figs. 3–5. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

as a linear perturbation with respect to the equilibrium profile, so that the linear growth rate of the latter results strongly 
perturbed by the nonlinear interaction with the former, already at t � 23. Also, the dynamics at the O -point of the m = 1
island is (non-evidently, from Figs. 4–5) perturbed by the contribution of one of the nascent m = 2 islands growing in the 
same position. These complex features, not easy to be discerned when a large spectrum of modes with comparable initial 
amplitudes are excited, possibly also with different phases, are likely to influence the number of plasmoids observed both 
in reconnection of large aspect ratio current sheets and in simulations of secondary reconnection to a primary tearing-type 
mode.

4.2. Test case (2): classical tearing with ρs �= 0

As a second case we consider reconnection in the Hamiltonian limit for ρs �= 0. Electron compressibility effects related 
to ρs play a stabilizing role [20,57] on the secondary fluid instabilities which are characteristic of the “cold” collision-less 
regime (Sec. 4.1), and the Lagrangian invariants described by Eqs. (20) determine a laminar dynamics of nonlinear recon-
nection [25], related to the phase-mixing of the scalar fields F ± deρsU [27].

As a linear benchmark of the code, we have reported in Table 3 a few values of the linear growth rate of the mode 
kya = 1, at the varying of ρs , evaluated both directly from simulations with the AMR code and by numerical solution of the 
eigenvalue problem, following the procedure described at the end of Sec. 3.3. These values are further compared with those 
reported in Ref. [24] and measured in simulations performed with the pseudo-spectral code first used in Ref. [20].

As an example of the small scale generation which can be observed in the nonlinear dynamics of this “warm” Hamil-
tonian regime, we finally present the results of a simulation run for a = 0.5, de = 0.3a and ρs = 0.6a. For this experiment, 
we take α = 1.3, ε = 1.125e−5 and jlim = 11. Contourplots are shown at different times for the quantity F , together with 
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Fig. 8. Time evolution of the energy components, normalized to the initial total value of the energy: total energy Etot of Eq. (8) (black line), magnetic energy 
|∇ψ |2 (blue), electron kinetic energy d2

e |∇2ψ |2 (red), ion kinetic energy |∇ϕ|2 (mauve). Simulation case of Figs. 3–5. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Parameters and linear growth rates of the mode kya = 1
for different values of ρs and for L y = 4πa, de = 0.3a, 
with a = 1. The growth rates γeig are numerically com-
puted as described at the end of Sec. 3.3, whereas the 
values γnum in the third column are estimated by tracing 
the time evolution of the relevant Fourier components 
ky of the perturbed ψ̃ , averaged over the x direction. In 
the last column, are reported the analogous estimations 
from output data of simulations run with the pseudo-
spectral code used in Ref. [24] (cf. Table 2, there).

ρs γeig γnum γnum [24]

0.05 0.1268 0.127 0.127
0.1 0.1325 0.132 0.134
0.15 0.1408 0.139 0.140
0.2 0.1507 0.149 0.151
0.3 0.1732 0.170 0.175

the fields U and G+ and with the corresponding levels of refinement of the grid (Figs. 9 and 10). The laminar filamentary 
structures generated by the spatial phase-mixing process, first discussed in Ref. [27], is evidenced in all figures. Analogously 
to the ρs = 0 example considered in case test (1), energy conservation (not shown here) is granted as long as the grid 
refinement keeps up with the spatial filamentation. Again, the loss of spatial resolution also implies a loss of the rotational 
invariance of the contours. For the choice of a maximal refinement of hlim = 2−11L a loss of spatial resolution appears 
evident in the three contour-plots at time t = 34.4.

We finally note that also in this “warm” ρs > de case, fluid instabilities of interchange type set in, but this time along 
the x-axis (see the “mushroom” patterns visible in the contourplots of F and U in Fig. 10 after time t = 24). Eventually, 
then, also KH-type instabilities appear to develop (Fig. 10, t = 34.4) on the nonlinearly generated, thin vorticity sheets, 
analogously to what has been observed for some values of the ion-sound and ion Larmor radius in Ref. [24], although for 
ρs < de . The role of flows in the onset of fluid instabilities also in this warm ρs > de regime, which apparently has not 
been pointed out in previous studies, deserves however a more specific, dedicated study, as in the numerical experiment 
here presented the integral conservations of the Hamiltonian model result too compromised at t = 34.4. A more specific 
investigation, probably requiring a better optimized parallel version of the code, would allow to ascertain the interesting 
possibility to achieve a turbulent regime also in the advanced nonlinear stage of the ρs > de case (which, e.g., is more typical 
of tokamak plasmas).

5. Comments and conclusions

The study of magnetic reconnection with the reduced magnetohydrodynamic model offers a privileged framework for 
the development and application of adaptive schemes. These allow in principle to explore parameter ranges otherwise 
impossible to access with uniform grid schemes.

In this article, we have presented a multigrid adaptive method of high order. We have detailed an original fourth-order 
multigrid Poisson solver for fully threaded trees. We have accurately addressed the CFL stability of the RMHD equation set, 
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Fig. 9. Contourplot of the fields F (first row), G+ (second row) and U (third row) and of the adaptive grid (bottom row) at times t = 14, t = 16.8, t = 19.2. 
In this simulation the mode m = 1 has been initially excited in a simulation box with Lx = L y = 4πa, with de = 0.3a, ρs = 0.6a and a = 0.5.

so to allow a remarkable economy of computational resources at the beginning of the numerical experiments and to prevent 
the onset of numerical instabilities. While the AMR code we have provided is applicable to both the dissipative and strictly 
collision-less reconnection regimes, we have here focussed on the latter, which is more challenging from the computational 
point of view, due to the rapid nonlinear generation of small spatial scales, in principle inferiorly unbounded due to the 
lack of a physical dissipation scale.

We have then presented two numerical experiments performed in this collision-less, Hamiltonian regime, in a parame-
ter range comparable to that of previous numerical results available in literature. Together with a linear validation of the 
code, performed by measuring some growth rates of a primary tearing mode, we have discussed two examples of nonlinear 
simulation with which we have addressed two issues of quite general interest in reconnection problems: the role possibly 
played by the later appearance of primary unstable modes in the interpretation of numerical studies of secondary recon-
necting instabilities, and the possibility to achieve a turbulent regime also in “warm” (ρs > de) Hamiltonian reconnection. 
The numerical experiments here provided are however meant to be just preliminary examples, aimed to highlight the per-
formances and the usefulness of the AMR scheme. The physical issues we have addressed, as well as the applications to the 
other compelling problems mentioned in Sec. 1.1, will be the object of future studies, to be performed with more specific 
and small ε physics-oriented simulations.

An MPI parallelized version of this AMR algorithm is in progress. It relies on a hash-table storage of the nodes which 
are uniquely designated thanks to a 64-bit marker binded to the node position [88]. This allows the processors to exchange 
node data without resorting to pointers.
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Fig. 10. Contourplot of the fields F (first row), G+ (second row) and U (third row) and of the adaptive grid (bottom row) at times t = 24, t = 27.2, t = 34.4. 
Same simulation run as Fig. 9.
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Appendix A. Algorithm for the Collatz multigrid solver

We recall that the continuous refinement domains � j of level j are embedded: � j+1 ⊂ � j ⊂ · · · ⊂ �0 = [− L
2 , L

2 ]2 with 
periodic boundary conditions. The space step is given by h j = 2− j−1 L, so the discretized domain � j ⊂ {(− L

2 + 2− j−1k1L,

− L
2 + 2− j−1k2L), 0 ≤ k1, k2 < 2 j+1} contains 22 j+2 points or less.
We also distinguish the interior �̊ j of the domain � j form its boundary ∂� j : � j = �̊ j ∪ ∂� j . We denote x jκ ∈ � j the 

point at level j and position − L
2 (1, 1) + L2− j−1κ for κ ∈ Z ∩ [0, 2 j+1).

The algorithm of multigrid type uses auxiliary values r, w and s which respectively stand for the residual, the Gauss–
Seidel approximant and its cumulation from the different levels. Then the algorithm unfolds as follows:

1. We compute the right member of Eq. (8). For each j and each point x jκ ∈ �̊ j we set the perturbed right member

f (x jκ ) = 1

2

⎡
⎣ 0 1 0

1 8 1
0 1 0

⎤
⎦ v(x jκ ).
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2. We do n iterations of the following loop, with n ∼ 8 starting from an initial guess issued from the previous time step 
for instance. This value of n secures the convergence of the iterative process with a final residual much lower than the 
numerical error.
(a) Restriction: for j = jmax, . . . , 1, with h = 2− j−1 L

i. for all x jκ ∈ �̊ j such that x j+1 2κ /∈ �̊ j+1, we compute the residual at x jκ :

r(x jκ ) = f (x jκ ) − 1

h2

⎡
⎣ 1 4 1

4 −20 4
1 4 1

⎤
⎦ u(x jκ ).

ii. we initialize an approximate of a solution to Eq. (8) with the residual on the right side

w(x jκ ) = − h2

20
r(x jκ ).

iii. for all x jκ ∈ ∂� j , we set r(x jκ ) = w(x jκ ) = 0.
iv. we apply μ (= 2 here) Gauss–Seidel iterations on each point x jκ ∈ �̊ j in a multi-colored order similar to the 

red-black order of the usual multi-grid Poisson solver i.e. (2�1, 2�2) then (2�1 + 1, 2�2 + 1) then (2�1 + 1, 2�2)

and then (2�1, 2�2 + 1):

w(x jκ ) = w(x jκ ) − 1

20

⎛
⎝h2r(x jκ ) −

⎡
⎣ 1 4 1

4 −20 4
1 4 1

⎤
⎦ w(x jκ )

⎞
⎠

v. we update the residual: for all the points x jκ ∈ �̊ j ,

r(x jκ ) = r(x jκ ) − 1

h2

⎡
⎣ 1 4 1

4 −20 4
1 4 1

⎤
⎦ w(x jκ ),

u(x jκ ) = u(x jκ ) + w(x jκ ) and s(x jκ ) = w(x jκ ).
vi. we restrain the residual to pass it to level j − 1, for all x jκ ∈ �̊ j such that κ = (2�1, 2�2) = 2�,

w(x jκ ) = 1

16

⎡
⎣ 1 2 1

2 4 2
1 2 1

⎤
⎦ r(x jκ )

and then r(x j−1 �) = w(x jκ ) and u(x j−1 �) = u(x jκ ).
(b) At level j = 0, we solve the system exactly

1

h2

⎡
⎣ 1 4 1

4 −20 4
1 4 1

⎤
⎦ s(x0κ ) = r(x0κ ),

we put u(x0κ ) = s(x0κ ) and in the periodic case we take away the constant: for all j and κ , f (x jκ ) = f (x jκ ) − 〈r〉.
(c) Prolongation: for j = 1 . . . jmax

i. for all x jκ ∈ �̊ j we add the approximation obtained at level j − 1 to the solution u(x jκ ) and to the loop approxi-
mant s(x jκ ): w(x j 2�) = s(x j−1 �), w(x j 2�+e1 ) = 1

2

(
s(x j−1 �) + s(x j−1 �+e1 )

)
and the same for e2 (with (e1, e2) the 

canonical basis of R2),

w(x j 2�+e1+e2) = 1

4

(
s(x j−1 �) + s(x j−1 �+e1) + s(x j−1 �+e2) + s(x j−1 �+e1+e2)

)
,

then u(x jκ ) = u(x jκ ) + w(x jκ ) and s(x jκ ) = s(x jκ ) + w(x jκ ).
ii. we interpolate u at the boundary ∂� j of the domain � j with a sixth order centered scheme:

u(x j 2�) = u(x j−1 �) and

u(x j 2�+e1) = 1

256
[3 − 25 150 150 − 25 3] u(x j−1 �),

and the same for e2. Knowing that for symmetry reasons we deactivated all the points of the type x j 2�+e1+e2

remaining to the boundary ∂� j , we do not need to interpolate them.
3. In the periodic case at the end of the algorithm we subtract the average of u: u(x jκ ) = u(x jκ ) − 〈u〉.
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Appendix B. Von Neumann stability analysis

Let us write the von Neumann stability analysis of the RMHD equations (1), (2) and (3) in the most general case. Then 
we will set η and ν to zero.

We consider a perturbation (labeled by “ ̃ ”) of the initial solution and consider the new numerical solution: F + F̃ , U + Ũ , 
φ + φ̃, ψ + ψ̃ and J z + J̃ z . In order to explicit the bilinearity of the Poisson brackets, we introduce the linear operator ∇⊥:

∇⊥ϕ ≡ ∇ × (ϕez) = ez × ∇ϕ = (−∂yϕ,∂xϕ), (B.1)

so

[ f , g] = ∇⊥ f · ∇g. (B.2)

Then, the linearized equations for the perturbed solutions are:

∂t F̃ + ∇⊥ϕ · ∇ F̃ + ∇⊥ϕ̃ · ∇F = ρ2
s (∇⊥Ũ · ∇ψ + ∇⊥U · ∇ψ̃) − η J̃ z, (B.3)

∂t Ũ + ∇⊥ϕ · ∇Ũ + ∇⊥ϕ̃ · ∇U = −∇⊥ψ · ∇ J̃ z − ∇⊥ψ̃ · ∇ J z + ν∇2Ũ . (B.4)

In the framework of von Neumann stability analysis, we assume for a given k = (kx, ky) that F̃ (x, y) = F̃kx,ky eikx x+iky y and 
Ũ (x, y) = Ũkx,ky eikx x+iky y . The other perturbed functions ϕ̃ , ψ̃ and J̃ z are expressed in terms of F̃ and Ũ by means of 
Eqs. (3), (6):

ϕ̃ = − Ũ

|k|2 , ψ̃ = F̃

1 + d2
e |k|2 , J̃ z = |k|2

1 + d2
e |k|2 F̃ , ∇ f̃ = ik f̃ . (B.5)

Using ∇⊥ f · ∇g = −∇⊥ g · ∇ f , we obtain the linear equation:

∂t

(
F̃
Ũ

)
= M

(
F̃
Ũ

)
(B.6)

where

M ≡

⎡
⎢⎢⎣

−∇⊥ϕ · ik + ρ2
s ∇⊥U · ik − η|k|2

1 + d2
e |k|2 −∇⊥ F · ik

|k|2 − ρ2
s ∇⊥ψ · ik

−|k|2∇⊥ψ · ik + ∇⊥ J z · ik

1 + d2
e |k|2 −∇⊥ϕ · ik − ∇⊥U · ik

|k|2 − |k|2ν

⎤
⎥⎥⎦ . (B.7)

Then we remove the viscous terms (i.e. η = ν = 0). Taking |(kx, ky)| 	 1, the matrix M simplifies to:

M ≡

⎡
⎢⎢⎣

−∇⊥ϕ · ik + ρ2
s ∇⊥U · ik

1 + d2
e |k|2 −∇⊥ F · ik

|k|2 − ρ2
s ∇⊥ψ · ik

−|k|2∇⊥ψ · ik

1 + d2
e |k|2 −∇⊥ϕ · ik

⎤
⎥⎥⎦ . (B.8)

We assume ∇⊥ψ = ∇⊥ F + ε with |ε| � |∇⊥ F |, which is satisfied at the beginning of the simulation since F = (1 −d2
e ∇2)ψ

with de � 1, as required by the ideal MHD limit and ψ smooth. This approximation does not impact the stability condition 
and simplifies a lot the mathematical expressions. Then the trace and the determinant of the matrix M of Eq. (B.8) satisfy

λ+ + λ− = Tr(M) = −2∇⊥ϕ · ik + ρ2
s ∇⊥U · ik

1 + d2
e |k|2 , (B.9)

λ+λ− = Det(M) =
(
∇⊥ϕ · ik

)2 − ρ2
s ∇⊥U · ik

1 + d2
e |k|2 ∇⊥ϕ · ik −

(∇⊥ F · ik
)2

1 + d2
e |k|2 (B.10)

−ρ2
s

|k|2
1 + d2

e |k|2
(
∇⊥ F · ik

)2
. (B.11)

Then, solving

X2 − Tr(M)X + Det(M) = 0, (B.12)

gives the discriminant:

� = ρ4
s

(∇⊥U · ik
)2

(
1 + d2|k|2)2

+ 4ρ2
s

|k|2
1 + d2

e |k|2
(
∇⊥ F · ik

)2 + 4

(∇⊥ F · ik
)2

1 + d2
e |k|2 . (B.13)
e
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Hence, the eigenvalues of the matrix M are:

λ± = −∇⊥ϕ · ik + ρ2
s ∇⊥U · ik

2
(
1 + d2

e |k|2) ±
√

�

2
, (B.14)

that is, using 
√

a2 + b2 ≤ |a| + |b|, they locally satisfy:

|λ±| ≤ |∇⊥ϕ · ik| + ρ2
s |∇⊥U · ik|
1 + d2

e |k|2 +
(

1 + ρ2
s |k|2

1 + d2
e |k|2

)1/2

|∇⊥ F · ik|. (B.15)

Hence, the condition |λ±|�t ≤ C for |k|�∞ ≡ 1/�x, where C solely depends on the type of spatial and temporal discretiza-
tions, provides the stability condition on the whole domain, which is implied by:

�t ≤ C
�x

‖∇ϕ‖∞ + ρ2
s �x2

�x2 + d2
e
‖∇U‖∞ +

(
2ρ2

s + �x2

�x2 + d2
e

)1/2

‖∇F‖∞

, (B.16)

where ‖ · ‖∞ = ‖ | · |�1‖L∞(�) , and where we used |k|2 ≤ |k|2�∞ ≤ 2|k|2, |∇ f · ik| ≤ |∇ f |�1 |k|�∞ and ‖∇⊥ f ‖ = ‖∇ f ‖.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jcp.2017.08.046.
The readers interested in the implementation of this AMR method can find the C source code used to make the numerical 

experiments of Section 4 at https :/ /data .mendeley.com /datasets /kp266rgzf2 /1.
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