
Noname manuscript No.
(will be inserted by the editor)

High-order Adaptive Mesh Refinement Multigrid Poisson
Solver in any Dimension

Erwan Deriaz

Received: date / Accepted: date

Abstract A numerical method to solve the d-dimensional Poisson equation with
2pth-order accuracy for arbitrary d and p integers is proposed in the Adaptive Mesh
Refinement framework. This method relies on vertex-centered mesh refinement and
interpolation, on compact finite difference schemes and on multigrid algorithm. It
is compared to other existing methods. And, in extensive numerical experiments, a
sixth-order version of it in dimensions two to six and a tenth-order version in dimen-
sion three are tested.
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1 Introduction

Solving the Poisson Equation in dimension d:

∆u = v, with ∆ =
d

∑
i=1

∂
2
i (1.1)

plays a fundamental role in the Physics modelization and simulation.

Amongst many of its applications, this ubiquitous equation appears:

E. Deriaz
Institut Jean Lamour, Matériaux-Métallurgie-Nanosciences-Plasmas-Surfaces UMR 7198 - CNRS - Uni-
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– in the computation of potential forces which derive from gradients of potentials
of the kind a = ∇ϕ with ∆ϕ = ±ρ where ρ represents a density of mass or of
charges and ϕ a gravitational field (plus case) or an electric field (minus case) for
instances,

– to numerically solve the Incompressible Navier-Stokes Equation where the pres-
sure is obtained through ∆P =−ρdiv((u ·∇)u),

– to model dispersive effects as in the Heat Equation ∂tu = ∆u which needs to be
solved with implicit numerical methods of the kind (Id − ν∆)un+1 = un with
ν > 0, related to Poisson Equation.

Some of the solutions to these equations develop singularities in space and/or in time.
In this case the Adaptive Mesh Refinement (AMR) methods whose principle consists
in automatically adapting the grid to the numerical solution, give access to all the
scales, from the largest to the smallest with discrepancies of few orders of magni-
tudes as in the cosmological simulations [30]. Compared to the uniform grid meth-
ods, these methods cut down the memory needs of the simulations, and cut down also
their computational times when their compression rates drop below 10% [8,11]. They
allow to treat boundary layers [27], sudden disruptions [9] and to reduce the cost of
large simulations in cosmology [30], in ab initio simulations [15] and in geological
simulations [22,23].

Nevertheless these new possibilities offered by the AMRs come at the cost of
more complexity in the implementation because of the versatility of the data struc-
ture, and more numerical difficulties because of the non-uniformity of the grid. In
particular, as the discontinuities of the space step trigger discontinuities in the differ-
entials of the error functions, composing discrete differential operators decreases the
final order of accuracy –this effect does not appear in uniform grids where the final
order of accuracy of the composed differential operator is usually equal to the mini-
mum order of its differential components. Hence, in AMRs, the need for composed
discrete operators [27] or high-order schemes [3,9]. The parallelization of AMRs, in
particular for distributed memory, constitutes a real challenge overcome only by a
few number of codes [30,5,23].

In uniform Cartesian grids with periodic boundary conditions the Fast Fourier
Transform (FFT) with its complexity in O(Npt log(Npt)) –Npt denotes the number of
points– and its spectral accuracy beats all concurrent numerical methods. In the 80’s,
the multigrid methods [18] with their complexity in O(Npt log(Npt)) (the log(Npt) fac-
tor stands for the number of iterations necessary to reach the accuracy corresponding
to the increase of the number of points Npt ) opened the door to efficient numerical
methods suited to non periodic boundaries and immersed boundaries. Their princi-
ple (to separate scales to apply Gauss Seidel iterations) inspired the preconditioning
of powerful Linear Solvers establishing the algebraic multigrid methods. These are
blind to the underlying grid structure and can be used in the adaptive grids as do
[22,14] for instance. In the 90’s, the Fast Multipole Method [25,17,4] based on the
integral solution of the Poisson Equation and on the properties of its Green kernel,
appeared as a concurrent method efficiently handling the adaptive context and the
presence of boundaries. This research area continues to develop actively nowadays
[19,2].
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In the following, we present and investigate an original geometric multigrid me-
thod in the AMR framework to solve the Poisson Equation in any dimension at a high
order of accuracy. This multigrid algorithm is implemented inside a fully-threaded
tree structure programmed in C, but it should also work in block-structured AMR
implementations like [3,26]. Compared to other state-of-the-art Poisson solvers [16],
geometric multigrid Poisson solvers yield very good results regarding the efficiency
and the accuracy, similar to Fast Multipole Methods and better than algebraic multi-
grid methods. The method presented here relies on finite-difference compact schemes
introduced by Collatz in [7] and more precisely on the original high-order schemes
presented in [10]. It generalizes to any order and any dimension a fourth-order Pois-
son solver used to run a two-dimensional magnetic reconnection problem [9].

The course of the present paper goes as follows: Section 2 underpins the dif-
ference between vertex-based and cell-based AMRs, introduces the use of flags to
attribute roles to the points, details the interpolation process and the refinement cri-
terion; Section 3 recalls the original high-order compact finite-difference Poisson
schemes from [10], unfolds the algorithm of the AMR Poisson solver and studies
its stopping criterion, its cost and its convergence; Section 4 is concerned with ex-
tended numerical experiments, it tests the convergence of the AMR Poisson solver,
its accuracy, its computational efficiency, its OpenMP parallelization, the gain ob-
tained from initial guess and finally it statistically validates the theoretical refinement
criterion.

2 Vertex-based AMR

Most of the AMR schemes rely on finite volume discretization. It is the most natural
way to subdivide a computation cell [14]. It genuinely conserves the volume and
allows to use all the powerful finite volume tools: fluxes, slope limiters, ENO/WENO
adaptive stencils.

On the other side, finite difference based AMRs reach high order accuracies more
easily [9]. It necessitates more complexity in the implementation but reward comes
with its compactness and ability to reach high dimensions [11].

2.1 Differences between cell-based and vertex-based AMRs

In a d-dimensional space, a cell-based AMR refines a cell at level j by cutting it into
2d finer cells at level j+1. Given a cell C j,k ⊂ Rd :

C j,k =
d

∏
i=1

[
2− jki,2− j(ki +1)

]
(2.1)

it splits into

⋃
ε∈{0,1}d

C j+1,2k+ε =
⋃

ε∈{0,1}d

d

∏
i=1

[
2− j−1(2ki + εi),2− j−1(2ki + εi +1)

]
. (2.2)
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Fig. 2.1 Splitting of a two-dimensional cell into four cells. The numbers indicate their positions in their
respective levels.

The two-dimensional case is illustrated by Fig. 2.1.
A vertex-based AMR refines a point at level j by introducing the 2d − 1 middle

points located at its right (by convention) at level j+1:{
2− jk

}
=
(
2− jki

)
1≤i≤d spawns the points

⋃
ε∈{0,1}d

{
2− j−1 (2k+ ε)

}
. (2.3)

One point at level j becomes 2d points at level j+1 and one of these is exactly at the
same place, when ε = 0. Hence this vertex-centered structure eases the interpolation
process. Fig. 2.2 compares this spawning process with the cell-based splitting.

2k1

level j+1

2k1 +1

level j

2k2 +1

k1

k2 2k2

Fig. 2.2 Two-dimensional spawning of the new three vertices from the initial one. The numbers indicate
their numbering in their respective levels.

2.2 From interpolability criterion to activation flag

A first difficulty is that the left/right symmetry is broken.
The cell-based splitting naturally conserves the

left/right symmetry, while the vertex-based spawning
breaks it.
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A solution to this problem is to symmetrize the new mesh by activating only
the middle new vertices which have their two neighboring older vertices. Hence it is
necessary to put flags indicating whether a vertex is active or not.

This consideration generalizes to any d-dimensional refinement: at level j, given
ε ∈ {0,1}d the vertex 2− j(2k+ε) is activated if and only if the vertices 2− j(2k+2ε ′)
such that ε ′ ∈ {0,1}d with ε ′i ≤ εi ∀i ∈ [1,d], are activated.

In an approximation perspective, at level j, the older vertices upload their corre-
sponding values at level j−1. Then the new vertices are interpolated from their direct
neighbors with a 2nd-order accuracy.

Conversely this 2nd-order interpolation process can be seen as an activation cri-
terion on the new points. A vertex is activated if and only if it can be interpolated
through this process.

A similar criterion with 2pth-order interpolability permits to generalize this 2nd-
order interpolability criterion and to increase the order of accuracy of the interpola-
tion in the AMR to any 2pth-order with p≥ 1.

Remark 2.1 In the following numerical experiments, we will need as high as 12th-
order interpolation to test the 10th-order accurate AMR three-dimensional Poisson
solver.

2.3 Vertex typing

Some of the interpolable vertices are located outside any continuous active domain.
For instance the fourth order two-dimensional case of Fig. 2.3 allows us to distinguish
three kinds of vertices:
- the vertices inside the computational domain,
- the vertices remaining to the boundary,
- and the vertices which are only necessary for the interpolation.

Interior domain

Boundary

Vertex from level j

Interpolation support

Level  j+1

Fig. 2.3 Instance of fourth-order consistent distribution of vertices with their types. Only one among the
horizontal couple of interpolatory points or the vertical one is necessary.
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Typing these vertices gives us the opportunity to do the right operations at the
right places. This typing relies on the fact that for all k node of the level j+ 1, the
least interpolable vertex

(
2− j−1(2ki +1)

)
i is active if and only if all its neighbors are

active. As a result if it is active (interpolable) then it is located inside the continuous
domain of interpolable vertices.

Remark 2.2 The boundary can be made thicker with two points large boundaries,
depending on the stencil used for the Poisson solver.

In the C program, all these flags are stored in unsigned long long variables (i.e.
on 64 = 26 bits) inside nodes, allowing the dimensionality to reach d = 6.

2.4 Interpolet

Wavelet theory provides the most comprehensive frame to translate the interpolation
process into the basis element of a multiresolution analysis [13,21]. We look for an
interpolatory compactly supported function x 7→ ϕp(x) verifying:

ϕp(0) = 1, ϕp(k) = 0 ∀k ∈ Z∗

that induces a 2pth-order interpolation of the points in 1
2Z by the points in Z i.e.

I h
2
( f ) = ∑

k∈Z
ϕp

(
−k+

1
2

)
f (kh) = f

(
h
2

)
+O(h2p) ∀ f ∈C2p.

Then the function ϕp satisfies the self-similarity relation:

ϕp(x) = ϕp(2x)+ ∑
`∈Z

c(p)
2`+1(ϕp(2x− (2`+1))

with c(p)
2`+1 the coefficients associated to a 2p-th order interpolation at the point 0

by the points 1+ 2Z. The coefficients associated to the shortest compact supports
[−2p+ 1,2p− 1] are displayed in table 2.1. And the corresponding basis functions
ϕp(x) are plotted in figure 2.4. These functions are called Interpolets [13].

According to [21,11] the coefficients c(p)
2`+1 are symmetric c(p)

−2`−1 = c(p)
2`+1, non

zero only for ` < p and given by

c(p)
2`+1 =

p
24p−3

(
2p−1
p−1

)
(−1)`

2`+1

(
2p−1
p+ `

)
. (2.4)

For ` fixed, c(p)
2`+1 is monotonous in p and tends to 2

π

(−1)`
2`+1 which is the filter associated

to the sinc function also called the Shannon wavelet [21,12], hence

∀x ∈ R lim
p→∞

ϕp(x) = sinc(x) =
sin(πx)

πx
. (2.5)

The sinc function is associated to the Fourier interpolation.
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Table 2.1 Interpolation coefficients c(p)
2`+1 for 2nd to 8th orders.

2`+1 −7 −5 −3 −1 1 3 5 7

c(1)2`+1
1
2

1
2

c(2)2`+1 − 1
16

9
16

9
16 − 1

16

c(3)2`+1
3

256 - 25
256

150
256

150
256 - 25

256
3

256

c(4)2`+1 - 5
2048

49
2048 - 245

2048
1225
2048

1225
2048 - 245

2048
49

2048 - 5
2048

2nd order interpolet

4th order interpolet

6th order interpolet

8th order interpolet

Sinc function

−8 −6 −4 −2 0 2 4 6 8

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2.4 Interpolets of 2nd, 4th, 6th and 8th orders tending to the sinc function.

In dimension d, the multidimensional interpolet is obtained by tensor product:

Φ(x) =
d

∏
i=1

ϕp(xi).

In the following, we denote by I2p the 2pth-order interpolation at mid-point using the
coefficients c(p)

2`+1 from Table 2.1.
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2.5 Refinement criterion

In order to single out the areas of interest which need grid refinement to approximate
a given function f , we expand f into a wavelet basis or a hierarchical basis (ϕλ )λ

with λ = ( j,k):

f (x) = ∑
j≥0

∑
k∈[0,2 j−1]d

dλ ( f )ϕ(2 jx−k) = ∑
λ

dλ ( f )ϕλ (x). (2.6)

If |dλ | > ε j a threshold which depends on the level j, then the node Nλ containing
ϕλ is tagged as area of interest. This area extends horizontally to the neighbors of the
node Nλ , vertically upward to all their ancestors and vertically downward to all its
children.

A particular care should be given to the choice of the refinement criterion ε j since
it conditions the efficiency of the Adaptive Refinement. If the numerical scheme con-
sistency i.e. the numerical accuracy behaves like O

(
hp f (p)

)
then a best expansion

basis (ϕλ ) should satisfy dλ = O
(

hp f (p)
)

for any smooth f function. The norm
equivalence [6]:

‖ f‖Bs
q(Lq) = O

∥∥∥∥∥
(
‖(2s j2−

d j
q dλ )k∈[0,2 j−1]d‖`q

)
j≥0

∥∥∥∥∥
`q

 (2.7)

points out the exact criterion minimizing the Lq-norm of the sth-derivative of f :

|dλ | ≥ 2
(
−s+ d

q

)
j
ε0 (2.8)

with ε0 > 0 a constant in agreement with the desired number of discretization points.
For instance, in our case we want to solve the Poisson equation ∆u = v and to

minimize the error on the result u controlling the AMR thanks to the wavelet expan-
sion of v = ∑λ dλ ϕλ . As we can see u as a s = −2nd derivative of v we should take

ε j = 2
(

2+ d
q

)
j
ε0 to minimize the Lq error on u.

If we just have a wavelet expansion v=∑λ dλ ϕλ such that dλ =O
(

hp′ f (p′)
)

with

p′ 6= p we can consider in first approximation that dλ ( f (p−p′)) = O
(

2(p−p′) jdλ ( f )
)

.

Hence as dλ ( f (p−p′)) = O
(

hp f (p)
)

, the criterion

2(p−p′) j|dλ ( f )| ≥ 2
(
−s+ d

q

)
j
ε0 i.e. |dλ | ≥ 2

(
−s+p′−p+ d

q

)
j
ε0

yields a good result if the function f does not have too many disparities regarding its
local scales, i.e. f (k)(x) ∼ ξ k(x) f (x) with the local frequency ξ (x) bounded on the
whole domain. Otherwise, the criterion should just stick to the solid estimate (2.7)
and follow (2.8) or something in between.

The coarse-graining induced by a high-order large compact-support wavelet ϕ

may constitute a serious flaw and make a lower-order smaller compact support wavelet
expansion more optimal in practice.
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2.6 Summary

To summarize this vertex-based AMR construction, it goes along the following the
steps:

1. Spot the areas of interest thanks to a wavelet expansion.
2. Allocate nodes (with 2d vertices each) in the tree structure so that a minimal active

area encompasses the areas of interest.
3. Given these possibly active vertices and depending on the interpolations needed

further, activate the vertices.
4. Attribute types to the vertices: inside the computational domain, on the boundary

or just necessary for the interpolation process.

Remark 2.3 All the typed vertices are active. The others are deactivated and may be
removed from the memory as it may represent a significant load of memory in the
high-dimensional cases.

3 High order AMR Poisson solver

In the following, we present in detail a generalization to any dimension and any order
of the two-dimensional fourth-order AMR Poisson solver introduced in [9] for the
adaptive simulation of the magnetic reconnection. This algorithm necessitates three
main ingredients:

– vertex-based AMR presented in the previous section,
– multigrid methods [18,28],
– high-order compact finite difference schemes for Poisson equations [7,29,24,10].

3.1 Compact finite difference schemes for Poisson equation

These elegant methods were introduced by [1,7]. The reference [10] describes a
method to construct arbitrary order compact finite difference schemes for Poisson
equation in arbitrary dimension. In particular it derives sixth-order any-dimensional
schemes and a tenth-order three-dimensional scheme satisfying a Discrete Maximum
Principle condition which implies the stability of these schemes and the convergence
of the associated Gauss-Seidel iterations used in the multigrid methods.

We call stencil a discrete function A : Zd → Rd ,k 7→ ak. From this function we
form an approximation A of the Laplacian ∆ . For any function u sufficiently regular
at 0,

lim
h→0

1
h2 ∑

k∈Zd

aku(kh) = ∆u(0) =
d

∑
i=1

∂
2
i u(0).

By extension the A stencil may also denote the discrete operator A

A :
(
Rd
)(Zd)

→
(
Rd
)(Zd)

,(uk)k∈Zd 7→

(
1
h2 ∑

k′∈Zd

ak′uk+k′

)
k∈Zd

.



10 Erwan Deriaz

To define a compact finite difference scheme we need two stencils A and B with A an
approximation of the Laplace operator and B an approximation of the Identity. The
compact scheme is 2pth-order if for all discretized function uh = (u(kh))k with u
C2p+2-regular,

1
h2 Auh = B(∆u)h +O(h2p). (3.1)

If a0 < 0 and ak≥ 0 for all k 6= 0, then the compact scheme (A,B) verifies the Discrete
Maximum Principle. This property helps constructing accurate and stable schemes.
Relying on the one dimensional case, it is possible to show that for any dimension
there exist such schemes at arbitrary orders. With the growing order of the compact
scheme, the radii rA and rB of the stencils A and B, defined as rA = maxak 6=0‖k‖∞

become larger. Nevertheless these radii remain much smaller than in the non compact
finite difference case. For instance, the 6th-order compact scheme has radius rA = 1
while we have rA = 3 for the non compact scheme.

3.2 Multigrid Poisson algorithm

Let us consider embedded continuous subsets of [0,1]d

ΩJmax ⊂ ·· · ⊂Ω j+1 ⊂Ω j ⊂ ·· · ⊂Ω0 = [0,1]d

with periodic boundary condition. The set Ω j defines a discrete set of grid points

ω j = Ω j ∩2− jZd .

We denote ωc
j the complementary of ω j inside [0,1]d ∩ 2− jZd . Then, inside ω j we

distinguish the interior ω̊ j of ω j and its border ∂ω j such that

dist(ω̊ j,ω
c
j ) = max(rA,rB) and ∂ω j = ω j \ ω̊ j.

Doing so, we obtain boundaries ∂ω j thick enough to provide for the boundary con-
ditions of the compact scheme (3.1) on each level j. We remind that at level j we
have the space step h = 2− j. We also stress that in the algorithm, from the computer
memory point of view, xλ 6= xλ ′ if λ 6= λ ′ even if 2− jk = 2− j′k′.

With all these elements established, the AMR multigrid algorithm at arbitrary or-
der and dimension presented and tested in this manuscript to solve ∆u = v works as
follows:

1. The initial arguments given to the routine are:
(a) a typed adaptive grid (ω j) j∈[0,Jmax],
(b) the right hand side discrete function v,
(c) an initial guess u0, taken equal to zero if there is no prior estimate of the

solution u
(d) and a relative error tolerance tol > 0.
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2. On the initialization step we make:
(a) u = u0,
(b) v = v−〈v〉, so that

∫
v = 0,

(c) interpolation of the boundaries:
for j = 1 to Jmax, for xλ ∈ ∂ω j do

v(xλ ) = I2p(ω j−1)v

u(xλ ) = I2p+2(ω j−1)u.

(d) We form the right hand member Bv:
for j = 1 to Jmax, for xλ ∈ ω̊ j do

f (xλ ) = Bv(xλ ) = ∑
k′

bk′v(x j,k+k′).

(e) We start with the residue res = tol×‖v‖∞.

3. Beginning of the loop1

while ‖res‖∞ ≥ tol×‖v‖∞ do
(a) for j = Jmax to 1 do

i. for xλ ∈ ω̊ j do

res(xλ ) = f (xλ )−
1
h2 Au(xλ )

tmp(xλ ) =
h2

a0
res(xλ ).

ii. Execute twice the Gauss-Seidel iteration:
for xλ ∈ ω̊ j do

tmp(xλ ) = tmp(xλ )+
h2

a0

(
res(xλ )−

1
h2 A tmp(xλ )

)
.

iii. Update res and u at the level j
for xλ ∈ ω̊ j do

res(xλ ) = res(xλ )−
1
h2 A tmp(xλ )

u(xλ ) = u(xλ )+ tmp(xλ ).

1 The algorithm uses two intermediate variables: res which stores the residual and tmp which stores the
increments of u provided by the Gauss-Seidel algorithm.
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iv. Pass the residual and u to the level j−1 with the tensorial stencil
[ 1

4
1
2

1
4

]d
for x j−1,k ∈ ω̊ j−1 such that x j,2k ∈ ω̊ j do

res(x j−1,k) =

[
1
4

1
2

1
4

]d

res(x j,2k)

u(x j−1,k) =

[
1
4

1
2

1
4

]d

u(x j,2k).

(b) S0 = res(x0,0)
for j = 0 to Jmax, for xλ ∈ ω j do

f (xλ ) = f (xλ )−S0.

(c) Prediction-correction step
for j = 1 to Jmax, for xλ ∈ ω̊ j do

u(xλ ) = u(xλ )+ I2p+2(ω j−1)tmp(xλ )

tmp(xλ ) = tmp(xλ )+ I2p+2(ω j−1)tmp(xλ ).

4. At the end of the iterative process, the result is available in u.

3.3 Computational cost

As one can see, this special case of geometric multigrid method naturally extends the
original multigrid algorithm [18] to a vertex-based AMR. In particular considering
points instead of volume cells as most AMR papers do [14,27,30] makes it easier to
stay close to the original finite-difference multigrid design. The computational costs
are similar to the uniform grid case although it includes the overhead induced by the
more complex AMR data structure, cf Fig. 4.6.

The observed minimum tolerance after which the residual stops decreasing lies
in between ε and 104ε where ε = 10−16 stands for the computer error in double pre-
cision, cf Fig. 4.5, depending on the accuracy of the approximation (i.e. ∼ hmin). The
greater is the accuracy, the larger will be the minimum bound since a good approxi-
mation of it is given by

2d
‖u‖∞

‖v‖∞

h−2
minε or more precisely sup

x∈[0,1]d

(
2d
|u(x)|
‖v‖∞

h(x)−2
ε

)
.

Depending on the number of dimensions and on the compact scheme used, this toler-
ance is reached in about fifteen iterations. The most costly operations are the applica-
tion of A four times for each iteration, once for computing the residual (step 3(a)i.),
twice in the Gauss-Seidel method (step 3(a)ii.) and once when updating the residual
(step 3(a)iii.), and the computation of the right hand member f i.e. applying B once
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(step 2(d)). The cost of applying a stencil depends on the number of its non-zero ele-
ments. Hence the total cost C of the Poisson solver depends on the cardinality of the
stencil A mainly and of the stencil B in a lesser extent and can be written:

C = (#B+Nit(4#A+2×3+2(2p+2)))Npt (3.2)

where #B and #A stand for the numbers of non zero elements of the stencils B and
A, Nit the number of iterations (of the loop 3.), Npt the number of points and 2p the
order of the method. We neglected the small additional costs dependent on the size of
the boundaries including them in the fuzzy definition of Npt . The cardinalities #A and
#B directly depend on the order p and on the dimensionality d. They should roughly
evolve as O(pd−1) for #A and O(pd) for #B although in the non compact case they
have the values #A = 2d p+1 and #B = 1.

For instance, the 3-dimensional 6th-order HOC stencil [29] verifies #A = 27 (or
16 if we take advantage of the tensorial structure of the stencil), #B = 25 and only
needs 12 iterations to converge to the computer rounding error so its cost is given by
C = 1585Npt . Of course it is possible to decrease this cost by fixing a larger error
tolerance and taking fewer iterations. For instance converging to 10−6 only takes 5
iterations then the cost is given by C = 675Npt .

This compares advantageously to the costs given for the pth-order Fast Multipole
Method [4] whose optimal implementation in 3 dimensions yields

C = 200Npt p+3.5Npt p2.

Which means C = 1326Npt for the 6th-order p = 6 case. This small computation con-
firms the findings from [16] which states that the two methods have equivalent costs.

3.4 Convergence of the multigrid iterations

As this AMR multigrid algorithm works very similarly to the original one [18], it
should be possible to prove its convergence similarly. If we adopted the technique
presented in [30] which solves the Poisson equation recursively on the ω j domains
for j decreasing then the proof of convergence is exactly the same as in the uniform
case. Here there is an additional correction from the finer levels to the coarser ones
because the residual is locally computed on the finest level. This influences the rate
of convergence.

For instance if rA = 2 and the first boundary goes through the pivotal points (2ki)i
which straightly get their values from level j, and not through the points in the middle
of the cells (2ki + 1)i which are the most dependent on interpolation (see Fig. 3.1
to visualize the situation) then the convergence rate shifts from 1/2 to 1/8 which
represents a non-negligible gain of efficiency.

In order to reduce the number of iterations Nit in (3.2), the initial guess u0 chosen
as close as possible to u in the H2-norm allows a dramatic cut of the computational
costs. In the simulations with time evolution it is possible to first extrapolate the
solution u from the previous time steps in order to provide an accurate initial guess.
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The H2-norm criterion comes from the computation of the residual as res = v−∆u0
which is the pivotal operation of the Gauss Seidel iterative algorithm. Hence a noisy
initial guess, even close to the solution in the L∞-norm, has little interest.

This specificity of the geometric multigrid methods is a strong incitement to use
them in simulations. Let us notice that the algebraic multigrid methods can benefit
from similar initial guess when they rely on iterative solvers [22].

4 Numerical experiments

4.1 High order compact schemes (A,B) tested

The finite difference compact schemes used to test the present high order AMR Pois-
son solver were obtained in [10]. All of them satisfy a condition implying the Dis-
crete Maximum Principle and favorable to the fast convergence of the Gauss-Seidel
iterations. This condition states: a0 < 0 as small as possible and all the other ak coef-
ficients positive if k 6= 0.

4.1.1 Tenth-order three-dimensional scheme

This scheme was designed to be tenth-order and to have few points in the stencil A
although it does not realizes the minimum.

The A stencil is composed of 59 points: the central point 0, six symmetric points
of type (1,0,0), twelve of type (1,1,0), eight of type (1,1,1), 24 of type (2,1,1) and
eight of type (2,2,2), so it has a radius rA = 2. The B stencil has 113 points and a
radius rB = 4. All their localizations and their values are indicated in [10].

ω j−1

∂ω j

ω̊ j

ω j−1

∂ω j

ω̊ j

Fig. 3.1 Two ways of fixing the boundary with respect to the interior domain ω̊ j: setting the limit just
after the middle points (on the left) or just after the pivotal points (on the right). The first case is more
efficient with respect to memory management when rA is even, the second case converges much faster.
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4.1.2 Sixth-order any-dimensional schemes

This group of schemes generalizes the HOC (High Order Compact) stencil [1,29]
to any dimensions. Their stencils have tensorial structures so their complexities only
increase linearly with the number of dimensions d.

For α, p,β ,γ real numbers, the A stencil is of the form:

A = α[p 1 p]d +

γ

|
γ−β − γ

|
γ

(4.1)

namely

a0 = α +β , a(1,0,...,0) = α p+ γ, and a(1, . . . ,1︸ ︷︷ ︸
k times

,0,...,0) = α pk for k ≥ 2.

To reach the sixth-order accuracy, computations presented in [10] lead to:

p =
1
3
, α =

3
2

(
3
5

)d−2

, β =−25+2d
6

and γ =
1
6
.

The B stencil is built similarly:

B = ω[q 1 q]d +

b01
|
0
|

b01−0−λ −0−b01
|
0
|

b01

namely

b0 = ω +λ , b(1, . . . ,1︸ ︷︷ ︸
k times

,0,...,0) = ω qk for k ≥ 1, and b(2,0,...,0) = b01,

with

q =
1
7
, ω =

9
10

(
7
9

)d

, λ =
1

10
+

d
120

and b01 =−
1

240
.

The radii of A and B are rA = 1 and rB = 2. Applying the stencil A has a 1+5d com-
plexity instead of the usual O(d3) minimum complexity of compact none-tensorial
type stencils, and of the 1+6d complexity of the non-compact stencil.
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4.2 Gaussian test case

In the periodic domains [−0.5,0.5]d we consider the Gaussian function:

u(x) = F(r) = exp
(
− r2

σ2

)
+b (4.2)

with r = |x| and the parameter σ small enough so that exp(−0.52/σ2) � ε the
computer rounding error. For lower dimensions we take σ = 0.005 as in [14] so
exp(−0.52/σ2) = exp(−1002)≈ 10−4343. The number b is chosen such that∫

[−0.5,0.5]d
u(x)dx = 0.

With periodic boundary conditions, the solution u of the equation ∆u = v is deter-
mined modulo an additive constant. The non uniformity of the grid makes the condi-
tion

∫
u(x)dx = 0 difficult to reach in practice. Hence we choose a b minimizing the

L∞ error from the discrete solution to the exact one.

x

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

e
− r2

σ2

2σ

Fig. 4.1 Gaussian with σ = 0.5
6 much larger than σ = 0.005.

The argument function v, right hand member of the equation ∆u = v, is given by:

v(x) =
(

4|x|2

σ4 −
2d
σ2

)
exp
(
−|x|

2

σ2

)
+ c

with c a free real constant such that
∫

v(x)dx = 0 in the discrete form.

4.2.1 Verification of the order of convergence and of the accuracy

To assert the accuracies of the schemes, we begin with a test where starting from a
coarse non uniform grid we half its mesh length everywhere once, then twice, and so
on, computing the resulting L∞, L2 and L1 errors. That way the orders of convergence
appear clearly in two to six dimensions.
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Fig. 4.2 First two instances of the 3-dimensional grid with maximum refinement J = 9 corresponding to a
5123 uniform grid (left) and J = 10, a 10243 grid (right) used to test the accuracy of the 6th-order scheme.
Different colors correspond to different point concentrations.

Fig. 4.3 Order of convergence for the 6th-order scheme in various dimensions. The dashed line represents
the 6th-order slope.

All the following numerical experiments were run on a 16 cores, 32 threads,
32GB RAM Dell Precision T5610 computer.

Figure 4.2 shows two successive instances of grid. The grid points are represented
by dots whose colors change when the mesh length halves. Figures 4.3 and 4.4 show
the convergence tests of the 6th-order and 10th-order schemes respectively. These can
be compared to the same experiment in [14] where a 2nd-order algebraic multigrid
Poisson solver induces a 10−6 L2-error in the finest 3D case. Given the fact that
the L2-norm of the exact solution is approximately 5× 10−4, one can measure the
improvement of accuracy that the present geometric multigrid method provides.
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Fig. 4.4 Convergence for the 3-dimensional 10th-order scheme in various norms. The dashed line repre-
sents the 10th-order slope.

4.2.2 Computational efficiency

The cost estimate Eq. (3.2) is verified quite accurately knowing that each operation
(rawly speaking accessing an element of the grid) costs 10−8s. The OpenMP paral-
lelization of the C code proves useful up to eight threads.

In Fig. 4.5 we visualize the convergence of the iterative process and see the
number of necessary loop iterations in the Multigrid Poisson algorithm, paragraph
3.2. For instance, no more than 10 iterations are necessary to reach a residual equal
10−11‖∆u‖∞ criterion ending the iterative process, with the 6th-order 2D scheme.

As expected theoretically due to the tensorial structure of the stencil, and as shown
in Fig. 4.6, the cost depends bilinearly on the number of points and on the number of
dimensions. Above four dimensions, the shape of the adaptive grid plays a prominent
role as illustrated by the two six-dimensional cases: in the most costly one, the interior
points only represent 25% of the total number of points, while in the other one they
represent 95% of it. Regarding the 10th-order 3-dimensional scheme, its computer
times amount only to one and a half those of the 6th-order scheme.

For this experiment Fig. 4.6, the minimum number of interior points was taken
equal to 15e+3 in 2D, 3e+5 in 3D, 1.36e+6 in 4D, 2.78e+6 in 5D and 17e+6 in 6D.
These figures are multiplied by a number approximately equal to 2d to plot the second
curve, except for the 5D and 6D cases where the factors were taken equal to 10 and
3.3 respectively.

From now on we skip the 6-dimensional experiments because of their enormous
memory needs.

Based on three runs of the Poisson algorithm with the residual inferior to 10−10‖∆u‖∞

ending criterion, Fig. 4.7 represents the average time of execution per interior point
when applying an OpenMP task parallelization. Increasing the number of threads un-
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Fig. 4.5 Convergence process of the algorithm 3.2. The first iterations achieve the largest reductions of
the residual.

Fig. 4.6 Time per interior point to perform ten iterations of the Multigrid Poisson algorithm when varying
the number of points and the dimension.

til 8 to 11 allows to decrease the time of execution. The tenth-order scheme scales
better than the tensorial sixth-order scheme because at each Gauss-Seidel iteration
this latter needs to visit a node three times with lighter operations when the first one
only necessitates one visit with heavier operations. So memory access is more con-
centrated in the tenth-order case.
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The observed cost from Fig. 4.7 for the tenth order scheme, 3.210−5 × 108 =
3,200 operations, is in agreement with the theoretical cost C = 3,305 obtained from
Eq. (3.2) with #B = 113, #A = 59, Nit = 12 and p = 10.

Fig. 4.7 Time per interior point to converge the Multigrid Poisson algorithm to ‖∆un−∆u‖< 10−10‖∆u‖
when varying the number of threads. This tests the strong scaling. The dashed line represents an ideal
scaling.

Compared to p4est [23], these relatively poor parallelization results show that
there is room for improvement.

4.2.3 Initial guess

Starting from an initial guess uG close to solution u, in the sense ‖∆uG−∆u‖ small
compared to ‖∆u‖, allows to decrease the number of iterations necessary to reach
convergence. To test this concept and prove its efficiency, we take

uG(x) = u(x)+ ε cos(ξ x1) so ∆uG(x) = ∆u(x)−ξ
2
ε cos(ξ x1), (4.3)

and we look at the number of iterations needed to reach a residual equal to 10−10‖∆u‖∞.
Starting without any initial guess i.e. uG = 0, the algorithm needs exactly 10 iterations
with the 6th-order and 10th-order stencils to reach this ending condition.

In order to discard the approximation error, we replace in the definition of uG
Eq. (4.3) the exact solution u by the converged numerical solution of the discrete
problem.

For the experiment Fig. 4.8 we used the 3-dimensional Gaussian with σ = 0.005
as u function, and for both cases, the sixth-order and the tenth-order schemes, the
same adaptive grid with 1,139,121 interior points distributed on scales going from
323 to 40963 uniform grids equivalent. The computational time comes out approxi-
mately the same (approximately 6.5s for 10 iterations with 8 threads) for both cases,
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Fig. 4.8 Number of iterations needed to reach a residual equal to 10−10‖∆u‖∞ (‖∆u‖∞ = 2.4×105) and
stop the iterative process, starting from the initial guess Eq. (4.3). We generate a new point by multiplying
ξ by 3. At ξ 2ε = 10−5 we shift ξ from 2187×2π back to 2π and ε from 10−8 to 4.8×10−2.

in accordance with Fig. 4.7. The sixth-order scheme ends up with a 3.2× 10−9 L∞-
error and a 1.1× 10−9 L2-error while the tenth-order one ends up with a 9× 10−12

L∞-error and a 3.7×10−13 L2-error.

4.3 Oscillating Gaussian test case

The Gaussian test case contains a limited oscillating behavior which does not allow
to explore the possibilities of the adaptive refinement. Hence we introduce the Oscil-
lating Gaussian test case.

In dimension 2≤ d ≤ 6 we consider the following radial function:

Fε(r) = e−Ar2
cos
((

B
r2 + ε

)α)
(4.4)

with A = 150, ε > 0 a parameter which creates oscillations at an approximative dis-
tance r =

√
ε from 0. For N ∈N∗ a given number we take α =− log4N

log4ε
and B = π1/α

4·21/α

so that the function
Fε(r) = e−Ar2

cos(X(r))

with X(0) = 2Nπ and X( 1
2 ) =

π

2 (1+4ε)α ∼ π

2 contains N oscillations from the cen-
ter of the domain to its boundary.

4.3.1 Function analysis

Function r 7→ Fε(r) is C∞ on (−0.5,0.5) and it is sufficiently small at 0.5 (∼ 10−20)
so its C1 discontinuity at the periodic boundary remains numerically benign.
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Fig. 4.9 Oscillating Gaussian with N = 3 oscillations centered at 0, (4ε)0.418/2 and (4ε)0.279/2.

Suppose u(x) = Fε(r) with r2 = ∑
d
i=1 x2

i then, if Fε(r) = G(r2),

v(x) = ∆u(x) = 2d G′(r2)+4r2 G′′(r2).

This provides the right hand member for the numerical experiments.
We infer the maximal frequency by studying the variations of the function:

g(r) =
(

B
r2 + ε

)α

. (4.5)

We obtain g′(r) =−2αrBα(r2 + ε)−α−1 maximal for r = rM =
√

ε

2α+1 . At this dis-

tance to 0, g′(rM)∼ 2πNα√
ε

, the maximal frequency reached by u, provides the smallest
scale for the numerical scheme.

4.3.2 Validation of the refinement criterion

The diversity of behaviors displayed by this test function enables to test the refine-
ment criterion. Let us challenge the non-linear approximation theoretical predictions
and try to catch the best criteria.

As shown in Fig. 4.3 and 4.4, the present Poisson solver has orders p = 6 or
p = 10 so the Lq-error εLq = O(h−p). For an adaptive grid in dimension d the local
mesh size h(x) = 2− j(x) varies as a discontinuous function of the total number of
points Npt . It is more or less given by

j(x) = blog
(

Kv,α(x)N
−1/d
pt

)
c

where Kv,α(x) is a local constant depending on the right-hand-side function v and on
the refinement criterion α .
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On the whole domain and in average we would expect a relation of the kind

εLq = Kv,α N−p/d
pt . (4.6)

We verify this relation experimentally in Fig. 4.10. The wavelet coefficients dλ rep-
resent the local error of the 4th-order interpolation of the right-hand member v so it
is unclear which α parameter should be optimal. The experimental results verify the
general trend of Eq. (4.6) although it also shows a slightly chaotic behavior.

Fig. 4.10 Experimental Lq-error as a function of the number of points for the case ε = 10−4 and N = 3 in
Eq. (4.4). The theoretical slopes εLq = KN−p/d

pt ( p
d = 6

2 ,
10
3 , 6

3 from left to right) are represented by dashed
lines.

In the following we look for an optimal α minimizing the compacity factor Kv,α
i.e. driving to the most efficient non-linear approximation. To assert the study pre-
sented in part 2.5, we ran a large number of two-dimensional instances of the sixth-
order adaptive Poisson solver with a criterion based on the sixth-order interpolation
of the right-hand member v. In Fig. 4.11 we plot the total number of optimal cases
when α = k is optimal for various ε values in F , Eq. (4.4), and various numbers of
points Npt . It more or less looks like a Gaussian distribution centered on α = 2 which
is the theoretical value obtained in part 2.5.
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Fig. 4.11 Test of the optimality of the refinement criterion α . Varying ε in Fε of Eq. (4.4) and the number
of points Npt we retained the optimal α providing the smallest value for Kv,α in Eq. (4.6). The theoretically
optimal value is α = 2.

5 Conclusion

The present AMR geometric multigrid Poisson solver proves computationally effi-
cient compared to state-of-the-art modern Poisson solvers and fitted for any order of
accuracy and any dimension.

It relies on vertex-centered Cartesian non-uniform grids, although there is no rea-
son why it should not work with cell-based AMR. With cell-based AMR, its rate of
convergence which conditions its efficiency should be expected between 0.125, the
best vertex-centered case and 0.5, the worse one, cf Fig. 3.1 Part 3.4.

Its use of the 10th-order compact scheme developed in [10] demonstrates its abil-
ity to increase its order of accuracy. Maybe such an increase could be interesting for
delicate simulations such as ab initio molecular dynamics [15].

Despite all the experimental efforts, it was possible to demonstrate only a statisti-
cal optimal refinement criterion in agreement with the non-linear approximation the-
ory. Thanks to its possibility to start from an initial guess, this geometric solver finds
a very efficient use in non stationary equations, such as Navier-Stokes, Schrödinger
or Vlasov-Poisson equations. In these time dependent equations an initial guess is
provided by temporal extrapolation.

There are quite a few tracks to extend this work:

– the 6th-order scheme combined with a 4th-order immersed boundary method [20]
would result in a sixth-order AMR immersed boundary scheme,
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– the production of an any-dimensional high-order MPI-parallelized code sounds
feasible in a near future,

– there is also the possibility to directly compute the gradient of the potential from
the density function as it is done in Fast Multipole Methods [2].

Acknowledgements The author is thankful to Marc Massot and Christian Tenaud for instructive discus-
sions about algebraic and geometric multigrids.
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